Manual de producción caprina
Coordinadores responsables:
Coordinador del Programa Nacional de Transferencia Tecnológica y Extensión

Encargado regional convenio INIA – INDAP, Región de O’Higgins

Editores:
María Angélica Salvatierra G.

Cornelio Contreras S.
Ing. Agrónomo / INIA Intihuasi

Autor:
Raúl Meneses R.
Ingeniero Agrónomo, M. Sc., Ph. D. / INIA Intihuasi

Colaboradora:
María José Zamorano J.
Ingeniera Comercial, Mg. Sc.

Comité editorial:
María Angélica Salvatierra G.
Ingeniera Agrónoma, M. Sc., Ph. D. / INIA Intihuasi

Constanza Jana A.
Ingeniera Agrónoma, M. Sc. Dra. / INIA Intihuasi

Cornelio Contreras S.
Ingeniero Agrónomo / INIA Intihuasi

Érica González V.
Técnico en Biblioteca / INIA Intihuasi

Andrea Romero G.
Periodista / INIA Dirección Nacional

Boletín INIA Nº 370
Cita Bibliográfica Correcta:

ISSN 0717 – 4829

Este documento fue desarrollado en el marco del convenio de colaboración y transferencia entre el Instituto de Desarrollo Agropecuario (INDAP) y el Instituto de Investigaciones Agropecuarias (INIA), para la ejecución de un programa de apoyo y fortalecimiento de técnicos expertos, recopilando información, antecedentes técnicos y económicos acerca del mejoramiento del rubro caprino de la Región de Coquimbo.

Permitida su reproducción total o parcial citando la fuente y los autores.

©2017. Instituto de Investigaciones Agropecuarias (INIA).
Fidel Oteíza 1956, Piso 11, Providencia, Santiago. Teléfono: +56-2 25771000
Santiago, Chile, 2017.
Manual de producción caprina

Boletín INIA
INIA – INDAP, Santiago 2017
ÍNDICE

PRÓLOGO ..9

CAPÍTULO 1...11
SISTEMA DE PRODUCCIÓN...11

1.1. ¿Qué es un sistema de producción? ..11
1.2. Factores de producción ..12
1.2.1. Medio ambiente ..12
1.2.2. Manejo ...14
1.2.3. Alimentación ...14
1.2.4. Mejoramiento animal ...17
1.2.5 Infraestructura ...17
1.2.6. Sanidad ..18
1.2.7. Capacitación ...18
1.2.8. Gestión ..18
1.2.9. Créditos y subsidios ...19
1.2.10. Comercialización ..19
1.2.11. Emergencias ...20
1.3. Sistemas de producción ...21
1.3.1. Sistema tradicional ...21
1.3.2. Sistema mejorado ..22
1.3.3. Sistema intensivo ..24

CAPÍTULO 2...25
REPRODUCCIÓN..25

2.1. Fundamentos fisiológicos de la reproducción ...25
2.2. Preencaste ...27
2.3. Encaste ...28
2.4. Registros de monta ...30
2.5. Último tercio de preñez ..31

CAPÍTULO 3...34
CRIANZA DEL CABRITO..34

3.1. Parición ...34
3.2. Desarrollo del sistema digestivo de la cría ...35
3.3. Manejo durante la lactancia ...36
3.4. Algunas consideraciones de la crianza ... 39
3.5. Crianza después del destete .. 40
3.6. Producción de cabritos ... 43

CAPÍTULO 4
LACTANCIA Y ORDEÑA .. 45

4.1. Factores que afectan a la lactancia .. 45
 4.1.1. Condiciones ambientales .. 45
 4.1.2. Genética ... 45
 4.1.3. Número de partos ... 46
 4.1.4. Número de crías ... 46
 4.1.5. Alimentación .. 46
 4.1.6. Estado de la lactancia .. 47
 4.1.7. Sanidad .. 48
4.2. Fisiología de la lactancia .. 48
4.3. Absorción de los nutrientes para la síntesis de leche ... 50
4.4. Ordeña de cabras ... 51
 4.4.1. Calidad de la leche ... 51
 4.4.2. Sala de ordeña ... 54
 4.4.3. Proceso de ordeña .. 57
 4.4.4. Protocolo de ordeña .. 60
4.5. Secado de la cabra ... 61

CAPÍTULO 5
ALIMENTACIÓN Y NUTRICIÓN DE CAPRINOS ... 62

5.1. Necesidades nutritivas ... 62
 5.1.1. Proteínas .. 62
 5.1.2. Energía .. 62
 5.1.3. Vitaminas .. 62
 5.1.4. Minerales .. 63
 5.1.5. Agua ... 63
5.2. Sistema digestivo ... 64
5.3. Requerimientos nutritivos ... 66
 5.3.1. Mantención .. 66
 5.3.2. Gestación .. 66
 5.3.3. Lactancia ... 66
5.4. Cálculos de requerimientos nutritivos .. 66
 5.4.1. Requerimientos de mantenimiento .. 67
 5.4.2. Requerimientos de gestación ... 68
 5.4.3. Requerimientos de lactancia .. 69
5.5. Comportamiento en pastoreo ... 70
5.6. Suplementación ... 71
5.6.1. Gestación ... 71
5.6.2. Lactancia ... 73
5.6.3. Con qué suplementar ... 76
5.6.3.1. Formulación de una mezcla .. 80
5.6.3.2 Cuánto suplementar ... 82

CAPÍTULO 6
MEJORAMIENTO ANIMAL .. 84

6.1. Cruzamiento ... 84
6.1.1. Heredabilidad (h2) .. 84
6.1.2. Repetibilidad .. 84
6.1.3. Presión de selección .. 85
6.1.4. Ganancia genética ... 85
6.2. Selección ... 87
6.2.1. Tamaño y conformación ... 87
6.2.2. Rusticidad .. 88
6.2.3. Características de la ubre ... 88
6.2.4. Fecundidad y prolificidad .. 89
6.2.5. Facilidad de ordeña .. 90
6.2.6. Producción de leche .. 90

CAPÍTULO 7
SANIDAD ANIMAL .. 92

7.1. Medidas generales que se deben considerar en un programa sanitario......................... 92
7.1.1. Evitar la exposición de los animales a organismos o situaciones que puedan inducir a enfermedades ... 92
7.1.2. Mantención de alto nivel de resistencia a enfermedades .. 93
7.1.3. Prevención de la propagación de enfermedades ... 93
7.2. Enfermedades más comunes del ganado caprino ... 94
7.2.1. Diarrea neonatal .. 94
7.2.2. Enterotoxemia .. 95
7.2.3. Tuberculosis .. 96
7.2.4. Paratuberculosis .. 96
7.2.5. Linfoadenitis caseosa .. 96
7.2.6. Brucelosis .. 98
7.2.7. Mastitis ... 98
7.2.8. Enfermedades metabólicas ... 100
7.2.9. Enfermedades parasitarias ... 101
CAPÍTULO 8
ELABORACIÓN DE QUESOS DE CABRA

8.1. Condiciones de higiene
8.2. Recepción de la leche
8.3. Pasteurización
8.4. Inoculación
8.5. Adición de cuajo
8.6. Corte de cuajada
8.7. Desueroado
8.8. Amasado y salado
8.9. Llenado de moldes
8.10. Prensado
8.11. Maduración
8.12. Envasado

CAPÍTULO 9
COMERCIALIZACIÓN

9.1 Aspectos generales
9.1.1 Cómo aplicar el marketing al queso de cabra
9.1.2. Aspectos generales de la comercialización
9.2. Canales de distribución
9.3. Algunas consideraciones para mejorar la comercialización
9.4. FICHAS TÉCNICA-ECONÓMICA

Referencias bibliográficas
PRÓLOGO

La Región de Coquimbo se ha identificado, tradicionalmente, con la producción caprina y, en particular, por su producción de quesos de cabra. La gran cantidad de animales existente, representa el 50% del total de los caprinos en el país, que están en poder de cerca de 5.000 crianceros (Censo Agropecuario, 2007).

En general esta producción ha estado asociada a sistemas tradicionales extensivos, muy dependientes de las condiciones climáticas y, en particular, de las precipitaciones; las cuales han disminuido en volumen y frecuencia, presentándose largos períodos con escasez de agua, atribuibles al cambio climático, lo que agrava la situación de los crianceros. No obstante, la mayor cantidad de información climática registrada actualmente permite pronosticar las probables condiciones de la siguiente temporada, de modo que los crianceros se puedan preparar para enfrentar tales situaciones. En cuanto a la elaboración de quesos, en la mayoría de los casos es llevada a cabo con tecnologías de muy bajo nivel, teniendo como resultado quesos de dudosa calidad higiénica. Al respecto, y con programas del Estado, se han ido implementando condiciones más apropiadas para mejorar la calidad del producto, tales como la instalación de mangas de ordeñas con pisos de piedra y/o cemento, ubicadas bajo techo. Con el mismo fin, se realizan actividades de capacitación.

A través del tiempo los caprinos han sido la única especie que se ha adaptado a las características de la región, relacionadas con la limitada disponibilidad de forraje, como consecuencia de la sobreexplotación de los recursos naturales. Asimismo, la situación socioeconómica de los productores no es la más próspera, con lo que se cierra un círculo de pobreza, deterioro ambiental y producción caprina.

En diferentes partes del mundo, y particularmente en regiones de Europa, la producción caprina es un negocio agrícola rentable, con niveles de producción muy superiores a los existentes en Chile, con oferta de diversidad de productos, distribuidos en mercados muy exigentes en cuanto a calidad y características organolépticas.

Los esfuerzos técnicos realizados por mucho tiempo y la globalización de los mercados en los últimos años, han implicado el inicio de cambios que pueden revertir la situación caprina en la región de Coquimbo y llevar esta actividad a un
entorno económico totalmente diferente, lo que puede significar la ruptura del ciclo: pobreza, deterioro ambiental y producción caprina. El establecimiento de arbustos forrajeros por más de dos décadas, la Ley de Conservación de Suelos, el Reglamento Sanitario de los Alimentos, son prueba de que el queso de cabra ha mejorado su calidad. La incorporación de productores medianos a grandes ha permitido la comercialización del queso en las grandes cadenas de supermercados, con altas posibilidades que se comercialice también en otros mercados. Aún existe mucho por recorrer para alcanzar los objetivos por todos esperados y, en general, para que la actividad caprina sea un negocio que aporte a la economía y desarrollo de la región. Las exclusiones, el establecimiento de especies forrajeras herbáceas para pastoreo, el mejoramiento de la eficiencia de utilización de las fuentes de agua para riego, la producción de forraje suplementario y la utilización de subproductos, el mejoramiento genético, la disponibilidad de animales de mayor producción son algunas de las tecnologías necesarias de implementar. Sin embargo, lo más importante, adicional a la tecnología, es la necesidad de mejorar la capacidad técnica de los profesionales y la capacitación de los productores, de manera que sean competentes para utilizar en buena forma las herramientas existentes en beneficio de una mejor gestión productiva.

Muchos son los proyectos que no fueron exitosos porque no consideraron todos los factores que inciden en la producción, particularmente el factor humano, que es uno de los de mayor importancia, debido a que la productividad y gestión dependen esencialmente de las capacidades de decisiones que tomen las personas. La educación, la cultura y la capacitación son absolutamente necesarias para iniciar cualquier programa de desarrollo y, especialmente, para revertir los procesos negativos que hasta la actualidad se han realizado. El presente manual pretende realizar un aporte al mejoramiento del rubro caprino de la región de Coquimbo, por medio de la entrega de antecedentes que permitan conocer esta actividad.
CAPÍTULO 1.
SISTEMA DE PRODUCCIÓN

1.1. ¿Qué es un sistema de producción?

Un sistema de producción es el ordenamiento y planificación del proceso produc- tivo para hacer un uso eficiente de todos los recursos disponibles, conservando el ecosistema de modo que la producción sea sustentable en el tiempo (Figura 1.1).

Cada sistema de producción debe estar adaptado a las condiciones propias de una localidad o de una situación. De hecho, cada agricultor tiene su propio sistema de acuerdo con las características de su predio, a su condición y a su visión. O sea, no existe un sistema de producción que pueda aplicarse en cualquier circunstancia, pero sí existen principios básicos que son iguales para todos los casos. Estos principios están asociados a las leyes biológicas a las cuales están sometidos los procesos productivos agropecuarios. En el caso de los caprinos, el encaste, la parición, la lactancia y la crianza son etapas del proceso no modificables y requieren ciertas condiciones para alcanzar los objetivos productivos predeterminados.

En los sistemas productivos siempre se debe considerar que ocurrirán situacio- nes que no estaban previstas; es decir, hay que definirlos pero siempre mantenerse alerta, hay que desarrollar la capacidad de adaptación o flexibilidad para sobrellevar condiciones extremas sin desviarse de los objetivos establecidos. Por ejemplo, en la región de Coquimbo, la variación de las precipitaciones y la frecuencia de sequías son realidades normales, para lo cual es necesario preparar estrategias de acción apropiadas, de modo de poder enfrentar en buena forma estas restricciones.

El conocimiento de los factores de producción y sus interacciones contribuye al logro de los objetivos del sistema. Sin embargo, muchos de ellos no son controlables y son difíciles de predecir, como es el caso de las precipitaciones, aunque con cierta probabilidad es posible pronosticar qué situación se puede presentar en la próxima temporada. Disminuir los efectos negativos de estos factores permite, muchas veces, alcanzar parcial o totalmente la meta trazada. Los factores que inciden en los sistemas de producción animal son semejantes entre sí. Diferen solo en la proporción relativa en que participan, de acuerdo con las características particulares de cada especie animal involucrada y del lugar donde se desarrolla.
1.2. Factores de producción

1.2.1. Medio ambiente

El medio ambiente es uno de los factores de mayor importancia en la producción caprina de la región de Coquimbo, puesto que todas las variables climáticas (precipitaciones, humedad, velocidad del viento y temperatura), las condiciones de los recursos naturales (agua, suelo y vegetación) y la interacción que existe entre ellas, bordean condiciones extremas. Tales recursos, en muchas localidades de la región, se encuentran en grado de deterioro máximo, acentuado por el mal uso y las precipitaciones escasas.

En un sistema de pastoreo en secano, la producción de forraje herbáceo y arbustivo depende de las precipitaciones. En la medida que los sistemas sean autosustentables y tengan menos dependencia de las lluvias, hacen que esta variable sea de menor importancia relativa.

Al sur de la región de Coquimbo, en Los Vilos, el promedio de precipitaciones es de 220 milímetros; en cambio en la ciudad de La Serena, al norte de la región, estas disminuyen a menos de 100 milímetros anuales. También se van haciendo menores de Poniente a Oriente; es decir, desde el litoral hacia el interior, pero nuevamente se incrementan hacia la precordillera andina.
Las bajas precipitaciones y su distribución determinan un marcado déficit hídrico desde mediados de la primavera hasta gran parte del otoño (Figura 1.2). Como consecuencia del cambio del balance hídrico, la producción de forraje herbáceo y arbustivo disminuye, de Sur a Norte y hacia el Interior, al igual que la composición de la flora.

Figura 1.2. Balance hidrológico en Los Vilos y La Serena.

Las temperaturas presentan una tendencia inversa a las precipitaciones: aumentan hacia el Norte (desde Los Vilos a La Serena) y hacia el Interior (Illapel, Ovalle y Vicuña) y disminuyen en altura, hacia la cordillera de Los Andes. Con temperaturas más altas se produce un aumento de la evapotranspiración potencial, lo que incrementa el déficit hídrico.

Los caprinos, en general, son sensibles a las bajas temperaturas, las que disminuyen la producción de leche. Este efecto, que ha sido evaluado en el Centro Experimental Los Vilos (INIA), se ve acentuado por limitaciones energéticas y también por la falta de infraestructura de protección adecuada (Figura 1.3).

En ambientes con suelos y vegetación degradados, los sistemas se ven limitados en su potencial de producción forrajera y arbustiva, especialmente en aquellos sistemas dependientes de la disponibilidad de pastoreo natural y naturalizado. Esta situación también está muy relacionada con las precipitaciones, disponibilidad de agua, condiciones de suelo, contenido de materia orgánica y nutriente, especialmente de nitrógeno y fósforo. En suelos degradados se incrementa el
escurrimiento superficial, lo que genera una disminución de la infiltración y almacenamiento de agua en las napas subterráneas. Al mismo tiempo, los bajos niveles de nutrientes y materia orgánica de los ambientes degradados afectan el crecimiento del recurso forrajero; se incorpora menos materia orgánica y disminuye la mineralización de los componentes del tejido vegetal.

Figura 1.3. Disminución de la producción de leche, atribuible a efectos de temperaturas bajas.

1.2.2. Manejo

El manejo representa todas las acciones de gestión técnicas de un sistema de producción, como el encaste, la parición, la ordeña, la esquila y la selección, en cada una de las cuales es necesario realizar acciones que permitan lograr los objetivos. A modo de ejemplo, es muy importante programar la fecha de encaste de acuerdo con las características de un determinado lugar o zona geográfica, ya que las decisiones tomadas en esta etapa tendrán incidencia en la fecha adecuada de parición, en la proliferación y en la definición de los ingresos del sistema. Una baja tasa de encaste implica la pérdida de al menos dos crías y 27 kg de quesos, más la mantención del animal no preñado. Las deficiencias en el manejo de la ordeña podrían significar la disminución del volumen de leche en aproximadamente un 30%, debido a la retención de la leche por el animal.

1.2.3. Alimentación

La alimentación es uno de los factores que más incide en el costo de producción, siendo mayor en la medida que el sistema se intensifica: a mayor producción de
leche, más altos son los requerimientos nutricionales. El recurso de pastoreo obtenido del estrato herbáceo y arbustivo son de primera importancia por su bajo costo. Sin embargo, en zonas áridas y semiáridas, como la región de Coquimbo, la disponibilidad de estos recursos es limitado debido a las condiciones pluviométricas, lo que implica ajustar las cargas a la cantidad de forraje disponible. Dependiendo del grado de deterioro del suelo, la carga animal disminuye hacia el Norte y hacia la cordillera. La evaluación de pradera y estimaciones de carga animal realizadas en la región sobre la base de imágenes satelitales se indican en Figura 1.4. Pero en la actualidad, por largo período de limitación hídrica, estos valores son más bajos.

Los nutrientes aportados a través del pastoreo, como método de alimentación, requieren ser transformados en leche, carne y lana. Dicha transformación es dependiente de la eficiencia del animal que está siendo alimentado: a mayor eficiencia productiva o partición de los nutrientes hacia el producto, mayor es la necesidad de utilizar alimentación suplementaria, ya sea con forraje cultivado o desechos vegetales, puesto que el recurso de pastoreo no siempre entrega el volumen y la concentración de nutrientes adecuados para cubrir los requerimientos de los animales. Debido a que la suplementación puede llegar a representar más del 70% del costo total de la producción, es muy importante mantener un balance entre lo que se entrega, la condición corporal del animal y lo que este produce. Es decir, el balance debe ser establecido de modo que siempre el valor adicional de la producción obtenido por efecto de la alimentación suplementaria, sea mayor que el costo de suplementación.
Figura. 1.4. Capacidad de carga potencial de ganado menor estimada en la región de Coquimbo.
1.2.4 Mejoramiento animal

En un sistema de producción, el mejoramiento animal es básico para lograr incrementos productivos sobre la base del potencial genético del animal. Este mejoramiento se obtiene por medio de selección y cruzamiento.

La selección es una actividad anual y constante en el tiempo, que consiste en la eliminación de aquellos animales de bajo rendimiento y la mantención de los animales de mejor comportamiento productivo. En la eliminación también se considera a todos los animales que presentan anomalías (defectos físicos, animales secos, baja capacidad de proliferar, baja producción de leche) y problemas sanitarios (Mastitis, Linfadenitis infecciosa, Brucelosis).

El cruzamiento corresponde a la introducción de animales en el piño, normalmente machos de mayor capacidad genética de producción. Es la forma de introducir y fijar caracteres deseados a la masa con el objetivo de incrementar la producción.

1.2.5 Infraestructura

Cada acción de un sistema productivo requiere de infraestructura apropiada, como corrales, mangas, comederos, bebederos. Con la normativa de la legislación sanitaria, la infraestructura es más importante aún para la higiene del proceso de ordeña y elaboración de quesos.

Los animales, para producir eficientemente, requieren de condiciones ambientales mínimas, lo mismo que el hombre que trabaja con ellos. Esto se refiere a protecciones ante situaciones ambientales extremas, tales como bajas o altas temperaturas, precipitaciones y viento excesivo. Durante la parición es fundamental la protección de la cabra y particularmente de la cría. La ordeña requiere de un lugar limpio, higiénico y confortable para que el animal entregue su producto y el ordeñador haga un buen trabajo. Los animales necesitan bebederos y comederos que faciliten el acceso al alimento y al agua sin pérdida o rechazo de estos recursos.

En general, cada cabra requiere 1,5 m² bajo techo y el doble de patio para caminar. Para un macho es necesario 4 m², más el espacio para caminar, y los animales de reposición 0,6 m² por cada uno, más el espacio para caminar.
1.2.6. Sanidad

El máximo potencial productivo de un animal solo se obtiene de aquellos animales que están bien alimentados y completamente sanos. Además, existen enfermedades y parásitos que pueden infestar al criancero y a su familia, como es la hidatidosis. En la producción pecuaria una buena condición sanitaria se obtiene previniendo las enfermedades. Aquellos animales que presentan problemas de orden sanitario (Linfadenitis infecciosa, Brucelosis, Tuberculosis), en la mayoría de los casos, deben ser retirados del piño. El aspecto más importante que se debe considerar es la sanidad de la glándula mamaria, especialmente la prevención de la Mastitis, debido a que afecta seriamente la producción, la calidad de la leche y la elaboración de quesos.

1.2.7. Capacitación

La educación, capacitación y cultura son elementos de primera importancia en el desarrollo de la economía de una localidad, región y país. Estos elementos facilitan el "cómo hacer las cosas", utilizando de la mejor forma los recursos que el medio es capaz de entregar.

Las publicaciones sobre el tema establecen que los sistemas de extensión generalmente fracasan, porque los programas potencian más la infraestructura y la inversión (compra de maquinaria de alta tecnología o animales de alto potencial genético) que la capacidad, condición y medios de los campesinos. En condiciones deprimidas, en muchos casos los agricultores y profesionales no son capacitados en cómo utilizar las tecnologías o entender cómo interactúan los elementos que inciden en la producción; en consecuencia, no alcanzan a lograr el "cómo hacer bien las cosas". Por ejemplo, cuando se van a realizar inversiones de altos montos, elegir entre muchas alternativas, la más apropiada evita gastos adicionales de insumos de material externo a los predios.

1.2.8. Gestión

Se refiere a la necesidad de tomar decisiones con el fin de utilizar la manera más eficiente los escasos recursos con que se cuenta, pensando en que el predio está rodeado de muchos actores que se interrelacionan, influyendo en los resultados de la producción.

Un sistema de producción animal no está ajeno a los principios de la gestión, ya que el empresario agrícola, pequeño, mediano o grande, constantemente se enfrenta a la toma de decisiones para manejar los factores productivos (recursos) y obtener un producto que finalmente será enviado a un mercado. En este aspecto,
es muy importante no dejar de lado la asociación de los productores para lograr ciertos objetivos -por ejemplo, adquirir alimento-, lo que permite la obtención de menores precios y la ventaja de contar con alimento que en caso contrario es más difícil de obtener y a mayor precio. Ejemplo de ello es el trabajo realizado por INIA con la Oveja Chilota; o aquí, en la región, la asociatividad de crianceros para la adquisición de concentrado para alimentar a los animales, lo que les ha permitido fortalecer su presencia en el mercado, disminuir costos y obtener más fortalezas frente a los vaivenes de los mercados.

1.2.9. Créditos y subsidios

Por muchos años la falta de inversión biológica o financiera en los sistemas productivos de la región de Coquimbo, que se han manejado con un enfoque extractivo, ha generado que los subsidios y créditos blandos tengan hoy gran relevancia, especialmente en la restauración del medio (rehabilitación de suelos, mejoramiento de la vegetación y uso eficiente del agua), como es el DL 701 o el programa de suelos degradados o la implementación de un programa de pastoreo que permita incrementar el potencial forrajero de la pradera y otros que se pueden implementar en el futuro, por ejemplo, para mejorar la infiltración de agua en el suelo y/o la disponibilidad de agua para la población rural. Todo ello con el objetivo de proteger los recursos existentes y de cambiar la modalidad extractiva de los sistemas productivos, de modo que la producción del ganado caprino sea enfrentada como una actividad sustentable. Por ejemplo, los arbustos forrajeros han sido un elemento de gran importancia, pero son requeridas otras acciones complementarias para sostener una producción económicamente rentable, como fertilización, exclusiones, manejo del agua y microcuencas en el secano.

1.2.10. Comercialización

Muchas veces es considerado el último eslabón de la cadena, pero es sin duda el más relevante en el éxito de un sistema agropecuario comercial. En el caso particular del sistema caprino, la comercialización del queso debe satisfacer los requerimientos de la demanda y las expectativas de los agricultores, ya que representa la retribución al esfuerzo realizado después de un largo período de trabajo, considerando todos los riesgos y limitaciones a los que se ven enfrentados. A través del tiempo, el queso de cabra se ha desprestigiado, esencialmente por razones de orden sanitario. En la última década, como consecuencia de una serie de acciones, esta situación ha experimentado un cambio; sin embargo, todavía es necesario continuar haciendo esfuerzos para mejorar aún más la calidad de la producción, lo que contribuirá a una mayor demanda. Los productores que logren mantener los requerimientos mínimos de producción y calidad se verán muy favorecidos.
1.2.11. Emergencias

Los sistemas productivos están sometidos a situaciones de emergencia de distinta índole: incendios, condiciones de climas (precipitaciones, temperaturas, vientos, enfermedades), terremotos, cortes de luz y otros. En el caso de los sistemas caprinos en el área de secano, la falta de precipitaciones es el factor de máxima importancia en cuanto al volumen precipitado y a la frecuencia. Esta emergencia, en este caso, se denomina riesgo agroclimático, lo que se define como la probabilidad de que se produzcan daños sociales, ambientales y económicos, por amenazas y vulnerabilidad, para un territorio dado y durante un tiempo de exposición determinado. Entendiendo como “amenaza” la ocurrencia potencial de un evento físico, fenómeno natural o causado por el ser humano, que puede poner en peligro a un grupo humano, sus bienes e infraestructura, y el ambiente en que habitan, por ejemplo: heladas, sequías, inundaciones, tormentas de viento, granizos. La condición de los crianceros es entendida como vulnerable cuando una comunidad determinada está más expuesta a ser afectada por procesos físicos, sociales, económicos y ambientales que incrementan la susceptibilidad al impacto de una amenaza.

Ante el conocimiento que existe respecto de una alta probabilidad de un riesgo climático, es necesario tomar medidas para implementar estrategias tendientes a reducir el impacto de las amenazas agroclimáticas. Estas se pueden clasificar en tres etapas. Ver Cuadro 1.1.

<table>
<thead>
<tr>
<th>ETAPA 1</th>
<th>ETAPA 2</th>
<th>ETAPA 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antes del evento</td>
<td>Durante del evento</td>
<td>Después del evento</td>
</tr>
<tr>
<td>PRE EMERGENCIA</td>
<td>EMERGENCIA</td>
<td>RECUPERACIÓN</td>
</tr>
</tbody>
</table>

Cuadro 1.1. Etapas de las estrategias para reducir el impacto de riesgo climático.

En la primera Etapa se debe considerar: la alerta, la prevención y mitigación. La alerta implica estar en conocimiento de los pronósticos que permitan tomar medidas antes que la emergencia se produzca. Ante una alerta se debe prevenir o prepararse ante la eventual emergencia: conservar forraje, ajustar la carga, replantear un balance forrajero, entre otros. Finalmente tomar medidas de mitigación como, por ejemplo, comprar forraje, eliminar animales -los más impro-ductivos-, refaccionar infraestructura.

En la Etapa 2, durante el evento, es necesario tomar medidas más drásticas para enfrentarlo. Entre otros:
• Eliminar a los animales viejos, sin dientes.
• Eliminar a los animales poco productivos.
• Mantener solo las crías de reemplazo, eliminar el resto.
• Mantener los animales más productivos.
• Buscar alimentos suplementarios de bajo costo.
• Preocuparse en la preñez y lactancia.
• Mejorar condiciones de alojamiento.
• Evitar que los animales caminen.
• Supervisar su condición corporal.
• Mantener la sanidad.
• Mantener las aguadas.
• Evitar las pérdidas de forraje en el comedero.

Finalmente, en la Etapa 3, es necesario recuperarse y prepararse para el próximo evento. Entre las actividades que se pueden desarrollar se encuentran:

• Realizar obras para disminuir la escorrentía superficial.
• Intensificar la revegetación.
• Mejorar la conducción de agua de escorrentimiento.
• Mejorar la infraestructura productiva: corrales, dormideros, etc.
• Incrementar la disponibilidad de forraje.
• Conservar forraje.
• Prepararse para el próximo evento.

1.3. Sistemas de producción

1.3.1. Sistema tradicional

El sistema de producción tradicional utilizado por los campesinos de la región de Coquimbo está basado en el crecimiento de la pradera natural. Se programa el encaste de los animales de manera que la parición coincida con el mayor crecimiento de la pradera; es decir, en los meses de agosto y septiembre, con el fin de cubrir los mayores requerimientos que se producen a la parición de los animales, sin considerar, por desconocimiento quizás, que los máximos requerimientos se producen un mes después de la parición (Figura 1.5). Tampoco se ajusta, en este sistema, la cantidad de animales a la disponibilidad de forraje, lo que provoca sobrepastoreo y disminución del potencial productivo. Como consecuencia, disminuye la producción, la cual generalmente se trata de compensar con un mayor número de animales, lo que a su vez intensifica la degradación del ecosistema.
El sistema tradicional es muy dependiente de las condiciones ambientales. Durante el período de sequías el nivel de producción es escaso o nulo, debido a que no se dispone de recurso forrajero ni se considera la producción de forraje para conservarlos y ocuparlos en períodos de mayor requerimiento nutritivo y en períodos de sequías.

La mayoría de los agricultores no realiza selección de los animales de acuerdo con su nivel de producción, ni tampoco hacen manejo de reemplazos para mejorar su plantel. Es muy común encontrar una mala estructura de los piños; es decir, que estén formados por animales muy viejos, donde muchos de ellos ya han terminado su vida productiva.

Figura 1.5. Fecha de encaste e inicio de lactancia en un sistema tradicional, en relación con la curva de producción herbácea y requerimientos de los animales.

1.3.2. Sistema mejorado

En el sistema mejorado se busca hacer coincidir la máxima producción de forraje con el período de máximos requerimientos nutritivos de la cabra, lo que se produce un mes después de la parición, cuando la curva de lactancia alcanza su máxima expresión. El encaste se realiza más temprano que en el sistema tradicional, o sea entre diciembre y enero (Figura 1.6), para tener las pariciones entre junio y julio. Para intensificar este sistema, el encaste se puede realizar en noviembre, así las pariciones serán en abril–mayo, meses en que los precios de la leche y de los quesos son mejores. Adelantar el encaste implica contar con un recurso forrajero adicional en el último tercio de preñez (2 meses) e inicio de la lactancia, períodos que estarán desfasados de la curva de la pradera natural. En este sistema mejorado, la disponibilidad de forraje arbustivo y herbáceo puede suplir los requerimientos de alimentación en una primera instancia. Sin
embargo, para alcanzar mayores niveles de producción de leche es indispensable disponer de suplementación adicional, especialmente durante la lactancia. Para disminuir costos, los recursos de suplementación deben ser, idealmente, de origen intrapredial, que en condiciones normales deberían ser capaces de cubrir los requerimientos de producción de leche.

Otra característica del sistema mejorado es que disminuye la presión sobre el medio, pues la pradera se maneja con una menor carga animal, con el fin de incrementar la disponibilidad de forraje y mejorar la producción individual. Al disponer de más forraje se tiene la opción de conservarlo para años secos y recurrentes sequías.

Figura 1.6. Fecha de encaste e inicio de la lactancia en un sistema mejorado estacional, en relación con la curva de producción herbácea y requerimiento de los animales.

En condiciones de sequía es necesario disponer de una mayor cantidad de forraje que, además de cubrir los requerimientos de producción de leche, cubra los requerimientos de mantención, al menos en alguna proporción. Como recursos suplementarios se puede utilizar alfalfa, trébol alejandrino, residuos agrícolas (arvejas, habas, porotos, papas, paja de cereales), algas marinas y residuos industriales (orujo de vino, escobajo, residuo de panadería y pastelería, afrechillo, harinilla).

El sistema mejorado contempla además realizar mejoramiento, mantener registros productivos y mantener la infraestructura necesaria de corrales, comederos, bebederos, sala de ordeña, henil y enfermería.
1.3.3. Sistema intensivo

Basado en que la demanda actual del mercado es abastecida durante todo el año por diversos productos lácteos, este sistema se orienta a mantener una oferta permanente ampliando el período de encaste. Como los caprinos y ovinos pueden ser encastados solo durante el período del año de días cortos, se encasta a un grupo de animales temprano en la estación de cubrimiento (diciembre, enero) y a otro grupo tarde en la estación (junio, julio). Los encastados temprano en la temporada, inician su lactancia a fines de mayo, prolongándose hasta marzo o abril. Los encastados tarde en la temporada, inician su lactancia en noviembre, y dura hasta el invierno. Para tener éxito en este sistema y obtener leche durante todo el año, es necesario también tener recursos forrajeros durante todo el período.

Como se indica en las Figuras 1.5 y 1.6, los requerimientos nutricionales de los animales están asociados a sus estados fisiológicos, por lo que otra característica del sistema mejorado, es que disminuye la presión sobre el medio, pues la pradera se maneja con una menor carga animal, con el fin de incrementar la disponibilidad de forraje y mejorar la producción individual. Al disponer de más forraje se tiene la opción de conservarlo para el período seco del año o los recurrentes de sequías.

En condiciones de sequía, es necesario disponer de una mayor cantidad de forraje que, además de cubrir los requerimientos de producción de leche, cubra los requerimientos de mantención, al menos en alguna proporción. Como recursos suplementarios se puede utilizar alfalfa, trébol alejandrino, residuos agrícolas (arvejas, habas, porotos, papas); pero es necesario disponer de forraje, especialmente para el último tercio de preñez (octubre) y lactancia (meses de verano) de los animales encastados en junio-julio, periodo en que no existe pradera herbácea natural. Para cubrir las demandas nutricionales, de mantención y producción, en los diferentes períodos se debe disponer de recursos suplementarios producidos en praderas con riego. Por otra parte, es probable que en el inicio de la estación de días cortos (21 de diciembre) el sistema hormonal deprimir la curva de lactancia, lo que implica una disminución del potencial lácteo, especialmente cuando los animales no están acostumbrados a este sistema de manejo.
CAPÍTULO 2.
REPRODUCCIÓN

2.1. Fundamentos fisiológicos de la reproducción

Los caprinos, como los ovinos, son caracterizados como poliéstricos estacionales: es decir, presentan varios estros o calores en una determinada estación.

El ciclo estral es el período en que se inicia el desarrollo del folículo, maduración y liberación del óvulo; tiene una duración de 17 a 23 días en el 77% de los casos, existiendo situaciones anormales que pueden prolongar o disminuir el ciclo estral.

Estos ciclos estacionales están relacionados con el largo de días o fotoperíodo. Los ovinos y caprinos reaccionan a la disminución de las horas de luz, lo que en la práctica comienza el 21 de diciembre. Esto induce a cambios en la hipófisis (glándula ubicada en la base del cerebro), que estimula la secreción de hormonas tales como la FSH (folículo estimulante) y LH (hormona luteinizante). En las hembras, estas hormonas dan inicio al período estral, a la maduración de los óvulos y la expresión del calor (Figura 2.1). Al liberar el óvulo, se forma el cuerpo lúteo que inicia la producción de progesterona. Si el óvulo no es fecundado y la cabra no es preñada, el cuerpo lúteo involucra y el ciclo estral se inicia nuevamente. En los machos, las hormonas FSH y LH actúan sobre la producción de espermios en los tubos seminíferos de los testículos. La disminución artificial de la luz por un período de 14 horas, puede estimular en los machos el calor fuera de estación.

El tiempo de duración del calor o período estral oscila entre 29 y 34 horas, con rangos que varían entre 6 y 84 horas. En las razas Toggenburg y Saanen, en el 65% de hembras evaluadas, la duración del período estral resultó ser de 24 a 36 horas.

Los caprinos presentan ovulaciones entre los meses de diciembre y septiembre, y cerca del 90% se produce entre enero y mayo. Sin embargo, debido al factor racial, las ovulaciones pueden concentrarse en determinado período. Por ejemplo, cabras de las razas Toggenburg y Saanen presentan mayores ovulaciones entre noviembre y abril, con una máxima expresión en febrero.

En nuestro país la actividad reproductiva de las cabras se manifiesta desde febrero a septiembre, con una mayor expresión entre mayo y junio. Sin embar-
go, existen antecedentes que señalan que algunos caprinos no se comportan estrictamente como poliéstricos estacionales, y presentan pariciones los doce meses del año. En Los Vilos se ha observado a cabras criollas montadas en verano (diciembre-febrero) que no presentan dificultades para ser encastadas. Esto indicaría que es posible realizar el encaste durante un periodo bastante largo, incluyendo las estaciones de verano, otoño e invierno, es decir desde mediados de diciembre hasta agosto, pudiendo iniciarse la lactancia en mayo o en diciembre-enero.

Figura 2.1. Efecto de la luz en el inicio del ciclo estral.

Factores sociales, como la presencia del sexo opuesto, también pueden producir la inducción de calor. La estimulación de las hembras se debe a las feromonas que producen los animales (olor del macho) y son detectadas por órganos sensibles de la nariz. Un modo criollo de estímulo es usando un paño impregnado con olor a chivo. Este paño se guarda en un envase sellado para su utilización en la siguiente estación de encaste.
Una forma de concentrar el encaste es exponiendo al macho solo en el período estral, manteniéndolos aislados de las hembras el resto del tiempo. El macho que se exponga puede ser vasectomizado; es decir, machos que presentan funcionalidad completa pero sin la capacidad de eyectar los espermios, porque se ha destruido la cola del epidídimo, ubicado adyacente al testículo en la bolsa escrotal, lo que impide el paso de los espermios.

El calor de los machos puede ser inhibido o no presentarse por factores externos, tales como, alimentación y sanidad deficiente previo al encaste y condiciones de estrés originadas por un manejo fuera de lo común para el animal (traslados, cambios en el manejo diario, presencia de perros). Para evitar cualquier problema que inhiba la libido, y en consecuencia su actividad sexual, el manejo del macho debe ser rutinario.

2.2. Preencaste

El éxito del encaste es directamente dependiente del plano nutricional, tanto en el macho como la hembra. El desarrollo del aparato reproductivo, particularmente de las hembras de reemplazo, debe estar en condiciones que permitan que la hembra pueda ciclar y producir óvulos. En este caso es más importante el peso alcanzado al encaste que la edad de la hembra. Como mínimo se considera que un peso equivalente a 75% del peso adulto, es el más bajo que debe alcanzar la hembra para ser montada. Es decir, considerando que una hembra adulta criolla puede pesar entre 45 y 50 kilos, implica que el primer encaste debe realizarse cuando la cabritilla tenga entre 33,8 y 38 kilos. Sin embargo, es necesario que la alimentación sea suficiente para que la hembra continúe con su desarrollo y alcance el peso de adulto.

El plano nutricional es de importancia para que el aparato reproductivo funcione de acuerdo con las expectativas. El plano nutricional actúa sobre el volumen testicular, en la producción de espermatozoides, en la concentración de testosterona plasmática, en la actividad de los neurotransmisores, sistema hormonal, como en el incremento de los niveles de LH, y ovulación, como expresión de la condición del desarrollo de todo el aparato reproductivo.

La condición corporal es la única forma de establecer, tanto en el macho como en las hembras, si están respondiendo al plano nutricional. Un aumento de la condición corporal de 2,5 a 3,0 es adecuada para tener éxito en el manejo de encaste. Por ello un mes antes del encaste se debe incrementar el plano nutricional de las hembras. La suplementación para mejorar la condición corporal de la hembra, entre otros, tienen los siguientes beneficios; expresión de calor, mayor propor-
ción de animales encastados al primer estro, disminución del período de encaste, mayor concentración de pariciones, trabajo de parición más concentrado por menor período, incremento de pariciones dobles, mayor producción de leche y mayor producción de corderos o cabritos.

La condición corporal es una medida del estado nutricional del animal. Este se evalúa en el lomo, en la segunda vértebra después de la última costilla (Figura 2.2.), detectando con la mano el tamaño del lomo y la cobertura de grasa, además de su estado general, particularmente la visibilidad de las costillas.

Figura 2.2. Medición de la condición corporal.

2.3. Encaste

El encaste o manejo del cruzamiento de los machos y las hembras es de fundamental importancia para programar las pariciones y el período de lactancia. Conocida la fecha de encaste se puede estimar la fecha probable de parto y, en consecuencia, la fecha de inicio de la lactancia.
El éxito del encaste está basado en la detección del período estral de las hembras para que el macho las monte. Normalmente se puede detectar por signos externos. En este período las hembras muestran la vulva enrojecida, humectada con mucus, se dejan montar y monta a otras cabras, buscan al macho con intensidad y al presionarles el lomo lo curvan y permanecen tranquilas.

En la detección de estros también es factible utilizar machos vasectomizados. Estos animales detectan a la hembra en calor, lo que permite su separación y posterior monta con un macho entero.

Debido a que el período estral tiene una duración mayor a 24 horas, se facilita el encaste durante la noche. Algunos estudios de las características reproductivas de estos animales, han estableciendo que entre el 44% y el 64% de los celos se presenta en la mañana y el resto en la tarde. Aunque otros estudios han determinado que no existe diferencia en la presentación de calor entre el día y la noche. Por muchos años en INIA Los Vilos, en período de encaste, después del pastoreo, las hembras se mantuvieron con los machos durante la noche y no se presentaron inconvenientes.

Conocida la fecha de encaste se puede establecer la fecha probable de parición, que debiera ocurrir aproximadamente entre 147 a 150 días después. No obstante, el largo de la preñez presenta una gran variabilidad según la raza, tipo, condición corporal y tamaño del animal. La raza Anglonubian tiene aproximadamente una gestación de 150 días. En animales criollos la duración media es de 148 ± 4 días. En Los Vilos el análisis del período de gestación de animales criollos es de 149 ±2 días (Cuadro 2.1.).

Manteniendo un registro de encaste es posible determinar cuántos días deben los animales permanecer en encaste. Normalmente en 40 días; es decir, en dos ciclos todas las hembras deben quedar encastadas. Para mayor seguridad dos meses es suficiente. Sin embargo, llevando un buen registro de monta, este permite determinar que el encaste ha terminado.

Normalmente el manejo del encaste se realiza manteniendo al macho con el piño de hembras. En esta situación se produce un desgaste del macho al caminar siguiendo y ubicando las hembras. En este caso se debe mantener un macho para 50 hembras. Pero si el macho permanece en los corrales bien alimentados durante el día y se junta con las hembras después del pastoreo, en la noche se puede incrementar el número de hembras por macho a casi el doble.
Cuadro 2.1. Días de gestación de caprinos criollos, durante cuatro temporadas, en Los Vilos.

2.4. Registros de monta

Al llevar un registro o ficha de la fecha de monta (aunque no siempre es un signo de preñez) se puede calcular la fecha probable de parición, considerando que el número de días de preñez es aproximado y diferente entre los animales. Además, permite detectar problemas al encaste; por ejemplo, hembras que no han sido montadas o que han sido montadas pero no encastadas, para separarlas del piño.

En el Cuadro 2.2 se indica un ejemplo de ficha de monta. En la primera columna va la identificación de la cabra. En la línea de encabezamiento se indica el mes y el día. En cada celdilla se debe marcar con una X la fecha en que determinada cabra fue montada. Los dos primeros números de identificación corresponden a los dos últimos números del año de nacimiento, continuado por el número de orden de nacimiento.

<table>
<thead>
<tr>
<th>Cabra Nº</th>
<th>Febrero</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2</td>
</tr>
<tr>
<td>1311</td>
<td></td>
</tr>
<tr>
<td>1312</td>
<td></td>
</tr>
<tr>
<td>1207</td>
<td></td>
</tr>
<tr>
<td>1213</td>
<td></td>
</tr>
<tr>
<td>1216</td>
<td></td>
</tr>
<tr>
<td>1201</td>
<td></td>
</tr>
</tbody>
</table>

Cuadro 2.2. Ejemplo de registro de monta de los animales.

Muchas veces las hembras son montadas dos o tres veces, en estos casos se registra la última monta, especialmente cuando esta ocurre después de 18 a 20 días. Dos períodos estrales es suficiente oportunidad para que una hembra quede preñada.
Es muy probable que una hembra que no sea montada presente alguna dificultad de orden sanitario o fisiológico, por lo tanto, es candidata a ser eliminada del piño. Esto ayuda a mantener animales que siempre serán fáciles de encastar.

La condición nutricional es un factor que debe ser considerado para lograr éxito en el encaste y la parición. Animales flacos o muy gordos no son deseables; en cambio una condición media, o levemente sobre la media, tiende a producir partos dobles y triples. Particularmente partos dobles ya que aumenta la producción de leche y se obtienen más crías para la venta. Partos triples complica el manejo, porque la hembra tiene solo dos pezones y una de las tres crías siempre será afectada por las otras dos.

Posterior al encaste los animales deben dejarse solo en un plano nutricional de mantención, hasta llegar al último tercio de preñez que corresponde aproximadamente a los últimos 50 días, desde el día 100 de preñez.

2.5. Último tercio de preñez

El último tercio de preñez corresponde a los últimos 50 días antes de la parición. En este período se produce un incremento del crecimiento del feto, mayor desarrollo de la glándula mamaria y mayor producción de calostro y su calidad (Cuadros 2.3, 2.4 y 2.5). Esto es determinante en el peso de nacimiento, sobrevivencia y en el desarrollo de las primeras horas después del nacimiento. Prácticamente el 90% de las mortalidades neonatales son producto del bajo peso de nacimiento de las crías (crías débiles) y falta de calostro en las primeras horas de vida.

En este período es necesario incrementar el plano nutricional con el objetivo de mejorar los resultados de las pariciones.

<table>
<thead>
<tr>
<th>Heno</th>
<th>Días preparto</th>
<th>Días post parto</th>
</tr>
</thead>
<tbody>
<tr>
<td>kg</td>
<td>60 46 32 18 4 0</td>
<td>7 14 28</td>
</tr>
<tr>
<td>0,0</td>
<td>a a c b b b</td>
<td>a a a</td>
</tr>
<tr>
<td>0,6</td>
<td>2,9a 3,0a 2,7bc 2,7b 2,6b 2,5b</td>
<td>2,6a 2,5a 2,5a</td>
</tr>
<tr>
<td>1,2</td>
<td>3,2a 3,1a 3,1ab 3,2a 2,9ab 2,9a</td>
<td>2,7a 2,7a 2,7a</td>
</tr>
<tr>
<td>1,8</td>
<td>3,2a 3,1a 3,2a 3,2a 3,2a 2,9a</td>
<td>2,9a 2,8a 2,8a</td>
</tr>
</tbody>
</table>

Cuadro 2.3. Condición corporal de cabras suplementadas con heno de alfalfa en la preñez.
Los promedios en columnas con diferentes letras indican diferencias significativas (P<0,05).

<table>
<thead>
<tr>
<th>Suplementación de heno de alfalfa kg</th>
<th>Producción de leche al tercer día L</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0</td>
<td>0,331 ds</td>
</tr>
<tr>
<td>0,6</td>
<td>0,521 c</td>
</tr>
<tr>
<td>1,2</td>
<td>0,758 b</td>
</tr>
<tr>
<td>1,8</td>
<td>1,019 a</td>
</tr>
</tbody>
</table>

Cuadro 2.4. Producción de leche de cabras al tercer día de lactancia suplementadas durante la preñez.

Los promedios con diferentes letras indican diferencias significativas (P<0,05).

<table>
<thead>
<tr>
<th>Preñez tardía (kg)</th>
<th>Sin suplementación (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hembras y machos</td>
<td>3,05 a 2,15 b</td>
</tr>
<tr>
<td>Únicos</td>
<td>3,31 a 2,15 b</td>
</tr>
<tr>
<td>Mellizos</td>
<td>2,98 a 2,14 b</td>
</tr>
<tr>
<td>Mellizos machos</td>
<td>3,24 a 2,13 b</td>
</tr>
<tr>
<td>Mellizos hembras</td>
<td>2,63 ab 2,15 b</td>
</tr>
</tbody>
</table>

Diferentes letras en la línea indican diferencias significativas (P<0,05).

Cuadro 2.5. Peso de nacimiento de crías de madres suplementadas con y sin heno de alfalfa en la preñez tardía.

La única herramienta práctica para controlar el estado nutricional es la condición corporal, pero como los diferentes órganos responden antes que la condición corporal es posible disminuir el período de suplementación prenatal. Las cabras suplementadas con 500 gramos de maíz por 14 días antes del parto, producen más calostro por efecto del mayor contenido de glucosa en la sangre (Figura 2.3.). En este periodo, un incremento de la condición corporal a 3,0 es la mejor respuesta. Prácticamente el 90% de las mortalidades neonatales es producto del bajo peso de nacimiento de las crías (crías débiles) y falta de calostro en las primeras horas de vida.
Figura 2.3. Contenido de glucosa sanguínea y calostro de hembras caprinas suplementadas con 500 gramos de maíz 14 días antes del parto.
CAPÍTULO 3.
CRIANZA DEL CABRITO

3.1. Parición

Conocida la fecha de encaste, se estima la fecha probable de parición, considerando que los animales criollos tienen una preñez de 148 a 150 días. Cerca del momento de parición se puede observar cambios en la vulva, glándula mamaria y comportamiento animal. La vulva se observa enrojecida y con secreciones, la glándula mamaria está llena de calostro y la cabra busca lugares tranquilos. Con estos signos, y cercana la fecha probable de parición, la cabra debe mantenerse en un lugar limpio, seco y protegido de las condiciones ambientales, tales como viento o lluvias. Es conveniente tener una maternidad con corrales individuales, agua y alimento a libre disposición. Los corrales no deben tener más de 1,5 m² por animal y usarse, exclusivamente, para los dos a tres primeros días de parición.

En general, la cabra no necesita ayuda durante la parición, a no ser que existan dificultades durante el parto. El hecho de conocer la fecha probable de parto permite estar atento para asistirla si fuera necesario. También es conveniente ayudar a secar la cría con un paño limpio y desinfectar el cordón umbilical sumergiéndolo en yodo o utilizando un algodón. La cría recién nacida, para sobrevivir y posteriormente desarrollarse, debe consumir la primera leche, llamada calostro. El calostro no solo aporta los componentes de la leche, sino que también inmunoglobulinas y lípidos.

Las inmunoglobulinas son proteínas que participan en el sistema inmunológico de la cría para defenderse de infecciones y enfermedades que las afectan desde sus primeras horas de vida. Los lípidos son fuente de energía necesaria para la cría, la cual nace con muy pocas reservas corporales, por lo que esta fuente energética ayuda a la termorregulación durante las primeras horas.

El calostro comienza a sufrir variaciones en su composición, hasta que comienza la producción normal de leche. Este proceso de cambios de composición demora aproximadamente tres días. En vísperas del parto es importante limpiar los pezones con un paño y asegurarse que el canal del pezón no esté tapado con materia grasa y tierra para que la leche pueda salir libremente. Las crías a medida que pasan las horas de vida disminuyen su capacidad de absorber calostro, por ello es importante que lo consuman lo antes posible.
Una forma de ayudar a que las pariciones se desarrollen de buena manera, es la utilización de celdillas (Figura 3.1.) localizadas en los corrales, idealmente bajo techo, donde la hembra permanezca desde antes del parto hasta que la cría esté más firme, de 3 a 4 días. Así disminuye la mortalidad en comparación con cuando las crías nacen a campo abierto. Durante el período que esté en la celdilla es necesario disponer de agua y alimentación para la hembra.

![Celdilla para galpón de parición.](image)

Las celdillas no deben ser fijas, se apoyan a una muralla y unas con otras, de modo que el panel más corto quede al frente para que la cabra pueda salir.

Las ventajas de usar celdillas son: menos preocupación a que la parición ocurra en el campo; se puede supervisar los nacimientos fácilmente; facilita el ahijamiento; ante una emergencia se reacciona rápido; disminuyen las pérdidas por daño de perros, zorros y otros; la cría ubica fácilmente a la madre para su alimentación, entre otras.

3.2. Desarrollo del sistema digestivo de la cría

El conocimiento del desarrollo del aparato digestivo de las crías caprinas es de importancia para comprender su crianza. Al igual que el del animal adulto, está compuesto de cuatro compartimentos: retículo, rumen, omaso y abomaso, pero solo el abomaso presenta un desarrollo funcional. Los otros (retículo, rumen y omaso) no están en condiciones fisiológicas para cumplir sus funciones.
La leche consumida por la cría llega al abomaso (estómago verdadero) desde la cavidad bucal a través del esófago. Luego, por una prolongación del esófago, denominada gotera esofágica, la leche pasa al abomaso sin pasar por el rumen. La gotera esofágica es como un tubo que se forma durante los primeros meses de vida solo con el reflejo de la succión de alimentos líquidos. La leche es digerida en el abomaso mediante enzimas como la renina, la pepsina y el ácido clorhídrico.

Al nacimiento, los diferentes compartimentos presentan un tamaño semejante. Sin embargo, el desarrollo del aparato digestivo se estabiliza a los dos meses de edad, cuando alcanzan una proporción de 10% para el retículo, 60% para el rumen, 11% para el omaso y 19% para el abomaso.

Al comienzo la cría tiene un rumen poco desarrollado, al igual que las papilas ruminales que se encuentran en su interior, pero su tamaño aumenta rápidamente y en mayor proporción que los otros compartimentos. Las papilas ruminales son de un tamaño no superior a 1 milímetro, pero después de la octava semana alcanzan su tamaño y funcionalidad normal. Después del período inicial de vida, en el rumen se produce la fermentación de la fibra vegetal y la absorción de los ácidos grasos volátiles y amonio, a través de las papilas ruminales.

Las crías comienzan a consumir forraje en las primeras semanas, pastoreando en pequeña cantidad hasta que su único alimento llegue a ser el forraje o concentrado. El consumo de forraje desde las primeras semanas de vida estimula el desarrollo y funcionalidad más rápido de las papilas, que las de los animales que no tienen acceso a dieta sólida.

3.3. Manejo durante la lactancia

Una vez finalizado el parto, la cría es secada por su madre y el instinto animal la lleva a consumir calostro. Para que la cría reciba el calostro existen dos modalidades de manejo: dejar a la cría con la madre o, inmediatamente de nacida, separarla de su madre y entregarle el calostro con biberón o chupete, para después alimentarla con sustituto lácteo, como vemos en la Figura 3.2.

Dejar a la cría con su madre tiene la ventaja de ser de bajo costo. No obstante, este sistema dificulta el aprendizaje de la cría cuando se cambia al sistema de alimentación con chupetes. La experiencia indica que las crías aprenden más rápido a tomar leche con chupete cuando se separan con mayor antelación de la madre y el cambio se facilita por el aprendizaje social que se produce cuando un grupo grande de crías está bajo el mismo sistema. La desventaja de esta forma de alimentación radica en la mayor necesidad de mano de obra para manejar a
las crías los primeros días de vida. Por otra parte, estas crías deben ser mante-
nidas protegidas del viento, humedad y bajas temperaturas, como vemos en la
Figura 3.3.

![Figura 3.2. Crías amamantadas con sustituto.](image)

Figura 3.3. Crías destetadas, mantenidas bajo luz infrarrojas para mantenerlas temperadas.
Debido a la importancia económica de la leche, se debe utilizar la menor cantidad posible en la crianza del cabrito y usar alimento sólido lo antes posible. El destete debe realizarse aproximadamente a los 60 días, con un peso de la cría de 10 kilos, aunque a veces se puede llegar a destetar con 8,5 kilos o 2,5 veces el peso de nacimiento. Esto último si la cría ya consume dieta sólida.

En la Figura 3.4. se observa el crecimiento de crías destetadas a los 20, 30 y 40 días, comparado con el testigo, correspondiente a crías no destetadas antes de los 60 días. El rango de peso, entre 8,5 y 10 kilos, se obtiene entre los 45 y 50 días, aproximadamente.

Las ganancias diarias de peso de las crías no destetadas anticipadamente se incrementan con el tiempo, alcanzando el máximo entre los 52 y 61 días (Cuadro 3.1.). En cambio, en las destetadas temprano (a los 30 y 40 días) se produce una disminución de peso, resultado del estrés por el cambio del sistema de alimentación, a pesar de la disponibilidad de alimento a partir de los 10 días. Destetes a los 20 días no es posible debido a que los animales no logran sobrevivir. El consumo de leche es muy variable, siendo mayor mientras más tardío es el destete.

![Figura 3.4. Crecimiento inicial de crías destetadas a los 20, 30 y 40 días comparados con grupo alimentado sin destete.](image)
Cuadro 3.1. Ganancias diarias promedio de peso de crías destetadas a diferente edad (g/día).

Para disminuir el estrés del destete por el cambio brusco de un sistema de alimentación líquida a otro sólido, es necesario incrementar el consumo de alimento sólido (concentrado) antes del destete, pero en ese período existe el problema de aceptabilidad de este tipo de alimento. El acceso a heno de buena calidad puede ayudar a incrementar el consumo de alimento sólido, lo que a su vez incrementa el desarrollo funcional del rumen. La otra dificultad que se presenta además del rechazo, es el aprendizaje de cómo consumir el alimento. Una buena medida es colocar animales más grandes entre las crías, que solo consumen alimento sólido, de esta forma, se produce un aprendizaje a través del contacto social entre los animales.

3.4. Algunas consideraciones de la crianza

De acuerdo con el consumo promedio diario de leche (Cuadro 3.2.), las crías destetadas a los 61, 30 y 40 días consumen en promedio 73, 26 y 53 litros de leche, respectivamente. El destete precoz, a los 30 y 40 días, representa un ahorro de leche del orden de 64 y 27% respectivamente, que puede utilizarse en la elaboración de quesos, que en la actualidad tienen más valor que la carne.

En la crianza es muy importante tomar algunas decisiones en cuanto a la forma de manejo de la crianza de los cabritos. Si un cabrito, para alcanzar 10 kilos de peso, consume 73 litros de leche, el costo total de su alimentación es de $32.850, considerando un precio de la leche de $450 por L (valor a septiembre de 2016). El consumo de 73 L de leche, transformado en carne (10 kilos), equivale a un valor entre $15.000 a $20.000. Por este motivo, conviene más vender la leche como queso que venderla como carne. Empresarios agrícolas que así lo han entendido, disminuyen costos de producción comercializando o regalando todos los machos al nacimiento, criando solamente a las hembras de reemplazo.
Cuadro 3.2. Consumo de leche de crías caprinas entre el día 3 y el día 61 de vida.

3.5. Crianza después del destete

Los animales son destetados cuando ya están en condiciones de cubrir todos sus requerimientos nutritivos solo con el forraje que consumen. En situaciones de pastoreo en clima mediterráneo, como el existente en la región de Coquimbo, el destete se produce muy cerca de la máxima producción de forraje de la pradera y a no más de un mes de su maduración completa. Después de este período, la disponibilidad de forraje y nutrientes comienza a ser limitante para el crecimiento de las crías, siendo la etapa de verano y otoño la más crítica. Por consiguiente, el crecimiento de los animales es limitado, especialmente entre enero y junio, pero luego se vuelve a incrementar, como consecuencia de la nueva temporada de producción de forraje.

Las crías nacidas en años secos son las más afectadas en su crecimiento, comparadas con las que nacen en años normales o lluviosos, debido a la baja disponibilidad de forraje durante la primera estación de primavera que enfrentan. En cambio, las crías nacidas en temporada lluviosa encaran la primavera con mayor disponibilidad de forraje y llegan al verano con mayor peso corporal, condición fundamental para el crecimiento de las hembras de reemplazo en la segunda primavera, ya que en el primer verano siempre es nulo. Este comportamiento fue evaluado en la región de Coquimbo en condiciones de sequía, normal y lluviosa (Figura 3.5). También en las tres condiciones se vio que el peso de encaste alcanzado por los animales es igual o algo superior al peso mínimo requerido para cruzar las cabritillas o primerizas. Para obtener mejor crecimiento, necesariamente se debe recurrir a la suplementación de verano y otoño con forraje cosechado o conservado para este objetivo.
La suplementación de los animales con forraje extra predial implica un costo adicional en el crecimiento de los reemplazos. Por ello es necesario establecer claramente los objetivos que se persiguen. Si la meta es lograr el encaste de los reemplazos, para tener éxito es necesario que los animales hayan alcanzado un desarrollo y una condición nutricional determinada. En ese sentido el manejo debe ser orientado según el tipo de sistema: extensivo o intensivo.

En sistemas extensivos, el encaste se realiza cuando los animales cumplen 18 meses, aproximadamente. En esa fecha, las cabritillas o animales de reemplazo deben tener como mínimo un 75% del peso de un adulto; es decir, no menos de 33 kilos.

A diferencia del anterior, en condiciones de producción intensiva el encaste de los animales de reemplazo puede ser realizado a partir de los 8 meses de edad. Para lograrlo se requiere alcanzar, a la edad de dos meses, 10 kilos de peso y ganancias mínimas promedio diarias de 127 gramos durante los siguientes seis meses.

En ambos casos, una hembra primeriza que haya sido encastada continúa su desarrollo, por lo que es necesario entregar no solo los nutrientes requeridos por el feto, sino que, también, los requeridos por la madre para terminar su desarrollo. De preferencia la suplementación debe ser entregada en la tarde en comederos que minimicen la pérdida de alimento (Figura 3.6.).

Figura 3.5. Crecimiento de hembras de reemplazo entre destete y encaste, bajo diferentes condiciones de precipitación, en tres temporadas anuales.
En el Cuadro 3.3. se indican, de manera referencial, las necesidades de heno de alfalfa de buena calidad para suplementar crías de reemplazo durante el período seco y lograr pesos adicionales de crecimiento. Por ejemplo, si en noviembre la cría ha alcanzado 15 kilos de peso y se desea llegar al mes de agosto con 28,5 kilos, se requieren ganancias adicionales diarias de 50 gramos, eso significa que se debería suplementar con 0,212 kilos diarios de alfalfa durante 9 meses, siendo necesario disponer de 57,24 kilos por animal. Esto será efectivo solo si los requerimientos de mantenimiento de los animales son cubiertos con el pastoreo. El suplemento debe ser entregado de forma que los animales dejen muy poco rechazo en el comedero. Si el rechazo es demasiado (más del 10%) o si el animal engorda mucho, se debe disminuir el suplemento ofrecido, ya que el exceso de condición corporal puede ser más negativo que positivo.

Figura 3.6. Las crías requieren suplementación para alcanzar buen desarrollo y condición al encaste.
<table>
<thead>
<tr>
<th>Incremento de ganancia diario (g)</th>
<th>Heno de alfalfa (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>0,21</td>
</tr>
<tr>
<td>60</td>
<td>0,26</td>
</tr>
<tr>
<td>70</td>
<td>0,29</td>
</tr>
<tr>
<td>80</td>
<td>0,34</td>
</tr>
<tr>
<td>90</td>
<td>0,38</td>
</tr>
<tr>
<td>100</td>
<td>0,43</td>
</tr>
</tbody>
</table>

Cuadro 3.3. Requerimientos de forraje suplementario para alcanzar diferentes incrementos de peso diario.

En los sistemas intensivos, para alcanzar peso de encaste a los 8 meses, además de suplemento forrajero, se debe usar alimentos concentrados, ya que el volumen de forraje que contenga los nutrientes requeridos sobrepasa la capacidad de consumo diario del animal.

En la suplementación es importante el tipo de comedero con el objetivo de disminuir al máximo las pérdidas de alimento que cae fuera y que no es consumido por los animales. Este alimento no consumido, después de una temporada, puede ser de un valor económico importante. Evaluaciones de consumo realizado con cabras criollas han demostrado que puede perderse cerca del 30% de lo ofrecido. Además, existen casos que los animales, cuando se les ofrece heno, solo seleccionan las hojas y rechazan los tallos. En la actualidad, de ser factible, es conveniente la adquisición de chipeadoras que permiten cortar el heno a un tamaño de 5 centímetros o menos, lo que evita la selección y disminuye las pérdidas que se pueden producir en el comedero.

3.6. Producción de cabritos

La comercialización de caprinos como carne no es un buen negocio para los agricultores en las condiciones actuales, debido a que no existe un mercado formal. El costo de faenamiento en matadero es muy alto, esto implica aproximadamente un 50% del costo del producto, a no ser que se comercialicen adicionalmente los interiores (sesos, riñones, hígado, lengua, rumen, librillo e intestinos y cuero). Por otra parte, existen en la región de Coquimbo tres mataderos autorizados por el SAG para faenas de caprinos: Comercial Carnes Danke S.A. en Coquimbo, Cilda Fredes Aguilera – CFA La Unión–Combarbalá, Sociedad Matadero y Frigorífico la Estancia Ltda. en Illapel (www.sag.cl/sites/default/files/establ_faenadores_consumo_nac.xls), que trabajan con ovinos y caprinos, por lo que el costo de transporte es considerable.
Normalmente los agricultores productores de leche, para fabricar quesos, eliminan a los machos inmediatamente después de la parición, porque los beneficios económicos son mayores al transformar la leche en queso en vez de carne.

La producción nacional de carne caprina registra, para el año 2016, según datos de ODEPA con información INE, un total de 1.397 cabezas, lo que representa un bajo porcentaje de la población total, sin considerar faenamientos caseros para autoconsumo ni comercialización informal, que no son registrados.

Los caprinos producen una carne magra, con ausencia de grasa de cobertura, pero las canales presentan bajos rendimientos. A los 10 a 12 kilos de peso vivo, las canales tienen un peso aproximado de 4,5 kilos, los que representa un 39,2% del peso vivo, con un rendimiento de músculo del 64,1%. Después del destete, a los 7 meses de edad, con un peso vivo de 20 kilos, el rendimiento de la canal se incrementa a un 43,6%, pero el rendimiento del músculo se mantiene igual. Por esta razón, podría decirse que el sacrificio de los animales de mayor peso se traduce en una mayor eficiencia de las canales, no obstante, como las ganancias diarias de peso de las crías son muy bajas, 100 a 150 gramos o menos, es poco atractiva su producción y comercialización. Si las preferencias del mercado cambiaron y aumentara la demanda, podría transformarse en un producto de mayor rentabilidad para los agricultores.

Como alternativa de producción de carne, existe la posibilidad de mejoramiento genético de los animales criollos por medio de la cruza con caprinos de la raza Boers, los cuales muestran ganancias diarias superiores a los 200 gramos y rendimientos de canales de 50%, aproximadamente. La carne de estos animales fue comercializada en supermercado de Ovalle, teniendo buena recepción por los consumidores (Figura 3.7.).

![Figura 3.7. Carne de cabrito en supermercado de Ovalle, año 2004.](image)
CAPÍTULO 4.
LACTANCIA Y ORDEÑA

4.1. Factores que afectan a la lactancia

La lactancia es el período que continúa a la parición y, como ya se ha señalado, está determinada por la fecha de encaste. Diversos factores inciden sobre la calidad de la lactancia, tales como el medio ambiente, la genética, el número de partos, el número de crías, la alimentación, el estado de lactancia y la sanidad.

4.1.1. Condiciones ambientales

Los caprinos son animales sensibles a las bajas temperaturas y a la lluvia. Los efectos negativos de estos factores muchas veces se suman a deficiencias en los aportes energéticos, proteicos y de infraestructura, especialmente en los resguardos nocturnos. La disminución de la producción de leche durante el período invernal normalmente es atribuible a las bajas temperaturas, debido a que el animal debe utilizar energía para compensar la pérdida de calor producto de las bajas temperaturas, en vez de utilizarla en la producción de leche.

4.1.2. Genética

La genética es el factor que establece el potencial productivo del animal. La mayoría de las veces el potencial lechero no se expresa debido a que es limitado por otros hechos; por ejemplo, una mala nutrición, presentación de alguna enfermedad o por falta de infraestructura. No obstante, la selección de los mejores animales es una herramienta esencial en el desarrollo productivo de los rebaños, motivo por el cual deben eliminarse todos aquellos que producen menos leche, los con problemas sanitarios y los que han cumplido su etapa productiva en el rebaño.

El descarte de animales se realiza como una actividad de manejo normal en todas las temporadas. Mientras menos tiempo transcurra en reemplazar a los animales menos productivos por otros más productivos, más rápido es el mejoramiento de la masa. Las hembras deben permanecer como máximo hasta el quinto parto, a menos que alguna sea una excelente productora de leche. Los machos, aunque pueden estar activos hasta los cinco años, es conveniente dejarlos en el piño solo por dos a tres años, para evitar cruzamientos con hijas o nietas.
Llevar registros productivos es esencial para la selección y mejoramiento, así se sabe con certeza cuáles animales deben permanecer en el rebaño y cuáles deben ser eliminados. El mejoramiento consiste en cruzar animales de un rebaño con un animal de superioridad genética, normalmente incorporado al piño desde otro rebaño, o bien por inseminación artificial. Cuando el macho se escoge de otro rebaño, hay que asegurarse de que la madre registre lactancias de alto rendimiento. También debe presentar características físicas correspondientes a un buen reproductor; por ejemplo, buenos aplomos, desarrollo testicular, apariencia de macho y sin defectos genéticos. En el caso de la inseminación artificial es necesario solicitar las características genealógicas del animal.

4.1.3. Número de partos

La producción láctea se incrementa hasta el cuarto parto y posteriormente disminuye, motivo por el cual el animal debe ser retirado del rebaño después de finalizada la quinta lactancia, a no ser que se trate, como ya se dijo, de un ejemplar productor de leche extraordinario.

4.1.4. Número de crías

La cantidad de crías produce incrementos en la producción de leche. En ovinos se ha observado mayor producción en animales que tienen dos crías en vez de una, y la diferencia no es significativa entre 2 y 3 crías. En caprinos el incremento de la producción de leche por partos dobles es de 20% aproximadamente y en los partos triples es de un 14% por sobre los dobles.

4.1.5. Alimentación

La leche no es otra cosa que los nutrientes consumidos y reservas energéticas transformados en las células epiteliales de los acinus de la glándula mamaria. Los niveles de producción de leche están directamente relacionados con los nutrientes consumidos durante el último tercio de la preñez y los primeros 30 a 40 días de la lactancia.

La única forma de establecer el nivel nutricional de un animal es por medio de la estimación de la condición corporal. Un animal muy gordo está recibiendo un exceso de alimentación, que no está siendo utilizado en la producción de leche, sino que en acumulación de materia grasa. Un animal muy delgado está empleando sus reservas energéticas para producir y es probable que no esté expresando su potencial productivo. En general, una condición media es la más adecuada para la producción.
En el período de postparto la cabra utiliza sus reservas energéticas para producir leche, debido a que su capacidad de consumo no le permite comer la cantidad de forraje que requeriría para cubrir todas sus necesidades de nutrientes. Debido a este comportamiento, que disminuye paulatinamente en la medida que avanza la lactancia, es muy importante que la condición corporal al final de la preñez e inicio de la lactancia sea apropiada; es decir, condición media.

4.1.6. Estado de la lactancia

La leche es secretada constantemente a la ubre, motivo por el cual la capacidad de almacenamiento de este órgano es uno de los factores que puede limitar la secreción. De hecho, al incrementar de una a dos o a tres ordeñas diarias aumenta la producción, aunque ésta también puede variar de acuerdo con las condiciones a que se ve enfrentado el animal durante el día.

En relación con la producción de leche en el tiempo (Figura 4.1): al comienzo de la lactancia se incrementa diariamente hasta alcanzar el máximo en el día 29. Posteriormente disminuye en forma gradual, hasta que la ubre no produce más leche. El proceso de disminución se denomina declinación, la cual es inversa a la persistencia de producción de leche. La persistencia no es otra cosa que la mantención de los niveles máximos de producción, después del día 29. Una buena cabra lechera tiene alta persistencia y baja declinación, contrariamente una cabra de bajo nivel productivo tiene baja persistencia y alta declinación. Como esta es una característica condicionada por varios factores, es muy importante tenerlo en cuenta para la selección de los animales.

Figura 4.1. Curvas de producción de leche de cabra con diferentes persistencia y declinación.
4.1.7. Sanidad

La sanidad es uno de los factores de mayor importancia. El esfuerzo que se realiza para mejorar la producción es anulado cuando la sanidad del rebaño es de bajo nivel. Las enfermedades infecciosas, parasitarias y problemas físicos, tienen como resultado la disminución del apetito, disminución de la actividad de alimentación y baja eficiencia de aprovechamiento de los alimentos consumidos y, como consecuencia, la disminución de la producción láctea.

Muchos estados sanitarios de los animales son de carácter subclínico; es decir, no se manifiestan con signos externos, como podría ser el parasitismo o la mastitis, y el ganadero no alcanza a percibir el problema. En estas situaciones, las medidas profilácticas son de extremada importancia.

La mastitis disminuye la producción y calidad de la leche. Su efecto sobre la producción se puede prolongar hasta la lactancia siguiente. También existe la posibilidad de que la infección se transmita de un animal a otro a través de los implementos de ordeña. La leche ordeñada con mastitis es de mala calidad y puede contaminar toda la leche en el envase de recolección, dejando una partida completa, inhabilitada para la elaboración de quesos.

La cabra duerme sobre el suelo y, al despertar, generalmente orina y defeca en el mismo lugar. Esto implica que el pezón se contamina con bacterias entéricas, entre ellas Salmonellas, Echerichia coli, Klebsiella, Staphylococcus, Streptococcus, Corynebacterium, Citrobacter y Arcanobacterium. Estas bacterias están asociadas a Mastitis, provocando inflamación de la ubre y son las que van en la leche para elaborar quesos y pueden producir enfermedades como: colitis, gastroenteritis, neumonía, tifoidea, abortos e infecciones en diferentes órganos. Por este motivo es necesario aplicar el protocolo de ordeña y de desinfección de la ubre para asegurar una mejor sanidad y mejor calidad de leche y quesos.

4.2. Fisiología de la lactancia

La ubre está constituida por dos compartimentos separados por tejido conectivo. Cada uno de ellos es irrigado por una arteria que se subdivide para llegar a todas partes de la ubre. Los capilares son las estructuras de subdivisión más simples de la arteria y que entran en contacto con los alvéolos o acinus, estructura básica de la funcionalidad de la ubre (Figura 4.2.). Estos alvéolos se encuentran agrupados y forman los lóbulos de la ubre.
Figura 4.2. Alvéolo o acinus rodeado de capilares en contacto con las células epiteliales, que son las productoras de leche que se vierte en el lumen.

Los nutrientes necesarios para la síntesis de la leche son transportados por el sistema sanguíneo hasta las células epiteliales del alvéolo. Los nutrientes, tales como ácidos grasos volátiles (AGV), proteínas, lípidos, vitaminas y minerales, son absorbidos por el sistema digestivo y transportados al hígado, donde algunos de ellos sufren transformaciones. Posteriormente son repartidos por el sistema sanguíneo a todo el organismo.

Los AGV son muy importantes en la calidad de la leche y su aporte depende de la dieta. Los animales alimentados con forraje producen una alta cantidad de ácido acético, a partir de los constituyentes de la pared celular del pasto. Esta es una de las razones del porqué los animales que pastorean en las veranadas producen leche más gruesa y mientras más maduro es el forraje, más gruesa es la leche. Las dietas con granos favorecen la producción de ácido propiónico, el que es transformado a glucosa en el hígado, satisfaciendo las necesidades de azúcar de los animales. Los excesos de glucosa son transformados en glucógeno, que es una reserva energética del animal y que también aporta al incremento de su peso.
4.3. Absorción de los nutrientes para la síntesis de leche

La síntesis de leche depende de la disponibilidad de nutrientes en la sangre, del flujo de sangre y de la absorción de nutrientes por la glándula mamaria. Este último proceso es controlado por el sistema endocrino del animal. Durante el período de lactancia se incrementa la movilización de materia grasa, proteína y glucosa de la periferia hacia la glándula mamaria. Esto es ayudado por un cambio en la distribución sanguínea, que permite a la ubre absorber los nutrientes requeridos para la síntesis de la leche.

Los nutrientes transportados por la sangre traspasan las células endoepiteliales por difusión activa y pasiva, hacia las células epiteliales del acinus. La membrana de esta última es la que permite el paso de solo los nutrientes requeridos para la síntesis de leche (proteína, carbohidratos, lípidos, agua, vitaminas, minerales y substancias). Los orgánulos de las células epiteliales del acinus, sintetizan los productos que constituyen la leche y las secretan hacia el lumen por diferentes mecanismos. Entre los componentes que son transportados hacia el lumen también pueden ir aceites esenciales de alimentos y semillas (pasto tierno, cebollas, ajo, ensilajes muy fuertes, harina de pescado) que imprimen mal olor o mal sabor a la leche. Otros componentes de la leche, como por ejemplo las inmunoglobulinas de la sangre, son transportados por un acarreador hasta el lumen. Todos los movimientos y transporte de componentes de la leche hacia el lumen, desde el acinus son secuenciales y constantes, y solo son limitados por el aumento de la presión intramamaria inducida por el término de la ordeña. Esta presión rompe la unión entre células epiteliales, lo que fuerza el retorno de los componentes hacia la sangre.

La síntesis de la leche es continua, pero puede ser interrumpida y modificada por los microorganismos que producen infección de la glándula mamaria. Los microorganismos alteran la composición de la leche y rompen la membrana epitelial, teniendo como consecuencia el incremento de sodio, cloro y leucocitos, disminución de lactosa y, lo más grave, aparecen constituyentes de la sangre que pasan directamente de los capilares del acinus al lumen. Las células epiteliales, que son las áreas dañadas en la mastitis, puede que no se regeneren y pierdan su funcionalidad, lo que implica desde la disminución del potencial lácteo de la cabra hasta la pérdida de la ubre en los casos más severos. Los componentes de la sangre capilar que no son utilizados en la síntesis de la leche (como el anhídrido carbónico y otros) son devueltos al torrente sanguíneo por las venas hasta el corazón. Varios autores estiman que es necesario cerca de 500 litros de sangre para producir un litro de leche.
4.4. Ordeña de cabras

El proceso de ordeña es la etapa final en la obtención del producto de un sistema lechero. El resultado del año agrícola depende de la ordeña, por lo que la faena debe hacerse en la forma correcta para no perder todo el esfuerzo realizado durante el año: lograr leche de calidad y recoger todo el volumen producido por las cabras.

Se entiende por leche de buena calidad el producto de la secreción mamaria normal de cabras sanas, bien alimentadas, en reposo, exenta de calostro y que cumpla con los requisitos característicos que exige el reglamento sanitario. No hay que olvidar que es imposible obtener quesos de buena calidad con leche de baja calidad.

4.4.1. Calidad de la leche

Para obtener leche apta para quesos de calidad superior, hay que cuidar aspectos en su producción (Figura 4.3.).
Figura 4.3. Aspectos que se deben considerar en la obtención de leche de calidad.

- Antes de la ordeña la leche ya debe ser de buena calidad, sin microorganismos. Para ello los animales deben mantenerse libre de enfermedades, en especial de mastitis y brucelosis, y ser alimentados con productos que no la contengan y que no le incorporen olores ni sabores extraños.
- Las cabras deben ser ordeñadas en completa asepsia, limpiando el pezón antes de ordeñar para no contaminar la leche. Lo mismo que la manipulación de la leche, desde la ordeña hasta su utilización definitiva.
La sala de ordeña y los corrales deben mantenerse limpios (Figura 4.4.) para evitar la contaminación desde el momento mismo en que la leche es sacada de la ubre. La contaminación se produce por microorganismos del ambiente que permanecen en el canal del pezón y en su área externa. Estos microorganismos son los que permanecen en los corrales formando parte del material del piso, constituido por tierra, orina y materiales fécales.

Figura 4.4. La sala de ordeña, con una manga de ordeña como la de la fotografía, es fundamental para obtener leche de calidad.

Los crianceros acostumbran a ordeñar a las cabras en los corrales, sobre el material que se acumula en el suelo. En los casos de tecnología más deficiente, el ordeñador, en cuclillas, sujetá una pata trasera de la cabra entre el muslo y la pantorrilla. En esa posición es muy fácil que el ordeñador y el animal, que se sostiene solo en tres patas, pierdan el equilibrio y vuelquen el jarro de ordeña, el que se ensucia con guano, orina, pelos y materiales arrastrados desde el suelo del corral, por el viento o por el movimiento de los animales y personas. Así, la leche que luego será utilizada en la elaboración de quesos estará muy contaminada con microorganismos del ambiente. Los más frecuentes son estreptococos, salmonellas y coliformes, los cuales además pueden afectar la ubre y a la salud humana. Estos y otros microorganismos modifican el proceso de maduración, aumentando la acidez e imprimiendo al queso un sabor inusual (Figura 4.5.).
Figura 4.5. La ordeña sobre el piso afecta la calidad de la leche.

4.4.2. Sala de ordeña

La sala de ordeña es esencial para lograr un correcto manejo de este proceso. Para cumplir bien su función debe contar con una manga elevada o un foso de ordeña. Esta inversión será retribuida con creces por la obtención de leche higiénica y productos finales de alto valor comercial.

La sala debe ser cerrada o bien sus accesos deben estar orientados en sentido contrario a la dirección del viento predominante. De esta manera se evita la contaminación y las molestias que provocan las corrientes de aire. También debe ser fácil de ventilar y asear. En su construcción, incluida la manga de ordeña, se deben utilizar materiales no absorbentes, sin porosidad o muy poco porosos, de modo que al lavarse no exista posibilidad de que queden y se acumulen materiales orgánicos.

Idealmente la manga de ordeña debería construirse de fierro, aunque el uso de palos tratados con sulfato de cobre puede ser una buena alternativa (Figuras 4.6., 4.7. y 4.8.). En el caso de una fosa, los tubos de fierro empotrados en la orilla del foso son la mejor alternativa (Figura 4.9.).

Figura 4.7. Manga de ordeña, vista lateral.

La manga, tanto al principio como al final, debe tener una puerta para impedir que los animales se salgan durante el proceso de ordeña. Esto es de importancia especialmente al inicio de la lactancia, cuando los animales todavía no están habituados al sistema. Las puertas se abren solamente para permitir el acceso o el abandono de la manga.

En una manga de las dimensiones que se dan en la Figura 4.8. pueden ser ordeñadas 10 a 12 cabras de una vez. Para ordeñar 50 cabras, dos personas se demoran una hora. Al comienzo los animales deben acostumbrarse a la nueva modalidad, lo que demora 15 días como máximo. Una vez que se habitúan es muy fácil su manejo, ya que suben y bajan solas dócilmente y durante la ordeña son muy mansas. Este comportamiento lo adquieren si reciben buen trato durante el proceso.

La sala de ordeña requiere de construcciones o espacios anexos. Entre ellos, un lugar de almacenaje y limpieza de los utensilios de ordeña, un lugar donde ubicar el estanque enfriador o conservador de la leche y, finalmente, un lugar para que los ordeñadores se vistan con ropa de trabajo.

La luminosidad de la sala de ordeña es otro factor de importancia, siendo necesario contar, además de la luminosidad natural, con instalaciones eléctricas que den una buena iluminación. La misma condición debe cumplir la quesería. Según el reglamento sanitario de los alimentos, la iluminación debe estar en el rango de 250 a 400 lux, lo que equivale aproximadamente a una ampolleta de 40 watt por m2. Una luminosidad adecuada mejora las condiciones de trabajo y permite realizar la limpieza de las salas de ordeña y quesería más prolijamente.
4.4.3. Proceso de ordeña

La ordeña de cabras en una sala como la descrita, es un gran paso para lograr leche de óptima calidad. Sin embargo, eso no es todo, también es necesario realizar un manejo de la ordeña que permita mantener la ubre sana. Así se evita que disminuya la producción de leche y que esta se contamine.

El primer aspecto que hay que cuidar es el traslado de las cabras al establo de ordeña, el cual debe hacerse al paso de los animales, sin apuros para evitar que corran y se golpeen. Generalmente es aquí donde se producen traumatismos que afectan a las ubres, especialmente cuando están llenas de leche, pudiendo provocar mastitis y en consecuencia, leche contaminada con microorganismos patógenos y disminución de la producción. Es muy común observar que los piños son arreados y acosados por perros, lo que es necesario eliminar.

El procedimiento de ordeña es una rutina diaria, la cual no debe sufrir variaciones de una ordeña a otra o día a día. Desde el momento que ingresan los animales a la sala hasta que salen de ella, toda la acción rutinaria, como ruidos que hacen los ordeñadores, movimiento de los tarros, conversaciones, ruidos de la máquina de ordeña o de la leche que cae en el tarro, son estímulos para al animal, que facilitan la ordeña. Estos estímulos, como el producido por el masaje de la ubre y pezones (Figura 4.10.), provocan impulsos nerviosos desde el sistema nervioso periférico hasta el sistema nervioso central, más específicamente el hipotálamo. Como respuesta al estímulo nervioso, el hipotálamo activa la secreción de la hormona oxitocina, la cual hace fluir la leche desde el lumen hasta la cisterna de la ubre (bajada de la leche), facilitando y mejorando la eficiencia de la ordeña (Figura 4.11.). Cualquier situación anormal a lo que diariamente se realiza en la sala de ordeña, ruidos o personas extrañas, movimientos no habituales u otras, alteran la estimulación normal, provocando una reacción inversa, que impide la bajada de la leche. Por ejemplo, en el ganado ovino, se ha determinado que las ovejas pueden retener hasta el 30% de la leche, siendo atribuible este hecho al mal manejo en el procedimiento de ordeña.
Figura 4.10. Los masajes a la ubre y pezones y la limpieza de estos, estimulan la glándula para la bajada de la leche y eliminación de suciedades del pezón.

Figura 4.11. Acción hormonal en la bajada de la leche en la glándula mamaria.
La eliminación de suciedades del pezón, en el proceso de ordeña, debe ser con agua potable, en lo posible tibia. Como alternativa a la falta de agua potable, puede utilizarse una mezcla de agua con yodo al 1,5% (5 litros de agua más 75 cc de yodo). Solo debe lavarse el pezón y secarse con papel absorbente o un paño limpio (Figura 4.12 y 4.13). Si la ubre se lava completa, se aplica un exceso de agua que al escurrir puede contaminar los pezones y posteriormente escurrir al tarro de leche.

Figura 4.12. Lavado del pezón con agua potable antes de la ordeña.

Figura 4.13. Secado del pezón antes de la ordeña.
Generalmente en el canal del pezón se acumula material biológico y microbiológico, que contamina la leche cuando pasa por este punto. Una buena práctica para limpiar el canal es eliminar los dos primeros chorros de leche, acción que también estimula la bajada de leche y contribuye al proceso tranquilo y rutinario de la ordeña. En ese instante se puede realizar el test de mastitis que permite detectar problemas. Grumos y coloraciones anormales en la leche son signos de animales con ubres enfermas. Los animales con esos síntomas deben ser sometidos a curaciones con antibióticos y su leche debe ser eliminada.

Es importante que entre la estimulación y la ordeña exista el menor tiempo posible para no perder el efecto. Es recomendable estimular a pocas cabras (dos o tres) y ordeñarlas de inmediato. Experimentalmente se ha observado que los efectos de la estimulación no demoran más de 25 segundos en producirse.

La ordeña debe ser hecha a fondo; es decir, dejando la ubre con la menor cantidad de leche residual. En ordeña mecánica se debe ser cuidadosa para no efectuar una sobre ordeña. La succión producida en esos casos puede afectar la ubre y producir mastitis.

Al terminar la ordeña y antes de liberar a los animales de la sala, es necesario aplicar un sellante al pezón para ayudar a mantener la ubre sana. Esta práctica consiste en sumergir cada pezón en un desinfectante que contenga yodo, vaselina, cloro o amoniaco disuelto en agua, de manera de dejar una película que lo rodee externamente y también en el interior del canal, antes de que se cierre por completo. La solución desinfectante se coloca en un envase plástico diseñado especialmente para este procedimiento. Los sellantes vienen preparados y listos para ser utilizados, existiendo de distintas marcas. Este manejo ayuda a disminuir la carga bacteriana y la probabilidad de nuevas infecciones de la glándula mamaria.

Terminado el proceso de ordeña, los animales deben ser retirados de la sala y mantenidos en los corrales hasta que todos hayan sido ordeñados. Es conveniente dejarlos tranquilos y descansando, con el propósito de que el esfínter del canal del pezón se cierre completamente. Este es el momento más adecuado para entregar algún suplemento alimenticio a los animales.

4.4.4. Protocolo de ordeña

- Transportar a los animales calmadamente a los corrales de espera.
- Subirlos calmadamente a la manga de ordeña hasta que se complete.
- Empezar con los tres primeros animales, lavándoles los pezones con agua potable y secar.
• Estimular con masajes los pezones para facilitar la bajada de leche.
• Observar y detectar si la ubre está caliente más de lo normal o el animal presenta dolor o molestias al masajear. Puede ser índice de mastitis.
• Botar los primeros tres chorros para limpiar el canal del pezón.
• Lavar y secar los pezones con agua potable o agua con desinfectante.
• Ordeñar.
• Continuar con la segunda y tercera cabra, repitiendo el procedimiento anterior.
• Terminada la ordeña, sellar los pezones con desinfectante.
• Sacar los animales de la manga y subir otro grupo para repetir el procedimiento.
• Finalmente, al terminar con todos los animales, limpiar los implementos y la sala de ordeña hasta la siguiente ordeña.

4.5. Secado de la cabra

El secado de la cabra es el procedimiento que se realiza para terminar con el período de lactancia. Se inicia con una fase de descanso de ordeñas y luego de preparación de los animales para el siguiente período de lactancia.

El largo de la lactancia debería alcanzar a 305 días para permitir un intervalo de descanso de 60 días antes de que comience la siguiente gestación. Normalmente, solo el 30% de los animales alcanza este largo de lactancia, siendo lo más común una duración cercana a los 250 días.

Después de parir, la producción de leche aumenta hasta, más o menos, el día 29 a 30 de lactancia, posteriormente comienza a disminuir hasta que el animal deja de producir. En los últimos días de lactancia, cuando el volumen de leche obtenido por ordeña no alcanza a 100 cm³, conviene primero disminuir el número de ordeñas a una vez al día y luego a día por medio, hasta que no se produzca más leche. En ese momento se realiza una terapia de secado, que consiste en introducir desinfectantes y antibióticos por el canal del pezón, para mantener la ubre libre de patógenos y disminuir la probabilidad de infección y de cuadros de mastitis. A esto se llama preparar el pezón para la próxima lactancia. Los productos utilizados se obtienen en el comercio y son conocidos como productos para terapia de secado.
CAPÍTULO 5.
ALIMENTACIÓN Y NUTRICIÓN DE CAPRINOS

5.1. Necesidades nutritivas

La alimentación es uno de los eslabones más críticos e importantes de la cadena productiva de caprinos, aportándose por esta vía proteínas, energía, vitaminas, minerales y agua que los animales necesitan. En condiciones de sequía (con escasez de precipitaciones), la disponibilidad de forraje de la pradera no es suficiente para cubrir las necesidades de producción, siendo obligatorio suplementar con alimentos concentrados o con forraje conservado para tales situaciones. En esas circunstancias el costo de la alimentación puede llegar a ser más de la mitad del costo total de producir leche.

5.1.1. Proteínas

Son compuestos químicos constituidos por carbono (C), hidrógeno (H), nitrógeno (N) y en algunos casos azufre (S). Estos compuestos están organizados en subunidades denominadas aminoácidos. Las proteínas conforman los tejidos del cuerpo, son constituyentes del sistema inmunológico (relacionado con la resistencia a las enfermedades), de las enzimas y de las hormonas. Son importantes para el crecimiento y la producción de leche.

5.1.2. Energía

Es la capacidad que tiene un alimento para producir fuerza o trabajo, formar nuevos tejidos, inducir el funcionamiento de los órganos y la producción de leche, carne, lana y pelo. La energía se produce a través de la fermentación de los carbohidratos y lípidos, con la cooperación de vitaminas y minerales. Cuando las proteínas están en exceso, se metabolizan y también producen energía.

5.1.3. Vitaminas

Son compuestos orgánicos necesarios en pequeñas cantidades y esenciales en muchas reacciones vitales del organismo. Se denominan por letras, existiendo vitaminas hidrosolubles (solubles en agua) y vitaminas liposolubles (solubles en lípidos o grasas). En la actualidad, debido al descubrimiento de su participación en la eliminación de productos tóxicos para el organismo, se las califica como antioxidantes.
Las vitaminas hidrosolubles, especialmente las del complejo B y la vitamina K, son sintetizadas por los microorganismos del rumen. Las liposolubles, en especial las A, D y E, deben ser aportadas por la alimentación, principalmente a través de forraje verde. Estas últimas son almacenadas en el hígado y usadas en la medida que se necesitan. Algunas publicaciones señalan que las pueden almacenar hasta por seis meses.

5.1.4. Minerales

Son elementos químicos inorgánicos que forman parte de tejidos, huesos, leche, lana, fibra. Además son importantes en reacciones metabólicas del organismo, como es el caso del fósforo (P) y el magnesio (Mg). Los minerales son aportados por los tejidos vegetales pero a veces, debido a condiciones ambientales, no son muy abundantes en las plantas y deben ser aportados a los animales en el alimento, en un salero o bloques de minerales para lamer.

5.1.5. Agua

Cerca del 70% del cuerpo y 87% de la leche está constituida por agua, siendo por ello un elemento de gran importancia. El agua sirve de disolvente de compuestos químicos y de transportador de elementos de la sangre y de fluidos a las células. También es un medio de transporte de compuestos de eliminación y ayuda a mantener la temperatura corporal. Además del consumo directo, el agua es suministrada por los alimentos, de donde los animales la aprovechan a través de su propio metabolismo.

Los animales se adaptan a las condiciones ambientales donde han evolucionado. En general los de zonas áridas son los más eficientes en la utilización del agua. Es el caso de los caprinos, cuyas características especiales de adaptación a condiciones de restricciones hídricas, los hacen más eficientes que otros rumiantes.

Los animales pueden obtener agua desde bebederos, también aprovechan el agua componente del forraje y el agua fisiológica producida por el metabolismo animal.

La cantidad y la calidad del agua tienen gran incidencia en el consumo de alimento y salud animal. La cantidad de agua puede influir en el consumo de alimento, especialmente cuando este último contiene bajo porcentaje de humedad. Cuando ello acontece, desciende el consumo de forraje y como consecuencia, disminuye el nivel de producción. En verano, la disponibilidad de agua para los animales es más importante que en invierno, debido a que el agua aportada por el forraje de verano (heno en pie) es menor que la aportada por el forraje de
La demanda de agua de los animales puede ser aumentada significativamente si el forraje consumido contiene sales. La calidad del agua, por su parte, está asociada a su higiene y contenido mineral. El agua siempre debe ser limpia y fresca para evitar problemas sanitarios, especialmente parásitos e infecciones. Muchas veces el agua tiene contenidos minerales de sales que no solo disminuyen el consumo de alimento, sino que producen toxicidad. Esta situación es más grave con aguas que se encuentran en áreas de actividad minera, ya que pueden contener arsénico, sulfuro, cobre o molibdeno.

5.2. Sistema digestivo

El sistema digestivo de la cabra es similar a los sistemas digestivos de las ovejas y de los vacunos, pudiendo identificarse cuatro unidades: retículo, rumen, amaso y abomaso (Figura 5.1). Los dos primeros están estructurados y funcionan como una sola unidad.

Figura 5.1. Compartimentos del estómago de los rumiantes.

El retículo-rumen es la unidad mayor (80% del total) y es donde se produce el proceso fermentativo de todos los nutrientes contenidos en los alimentos. Dicho proceso es inducido por las bacterias y protozoos que se encuentran en ese lugar. En el omaso o librillo, cuya apariencia es como las hojas de un libro, es donde se produce la absorción del agua de los alimentos, previo a su ingreso al abomaso. En el abomaso los nutrientes son digeridos de similar forma que en el estómago de los monogástricos.
Las proteínas son degradadas en el rumen por las bacterias, transformándose en péptidos, aminoácidos y amonia. La amonia es utilizada por los microorganismos para sintetizar nuevas proteínas que ellos mismos necesitan. Las proteínas microbiales contienen los aminoácidos en una proporción muy parecida a la requerida por el animal. Parte de la amonia traspasa la pared ruminal al sistema circulatorio y es conducida por la vena porta al hígado, donde se transforma en urea, la que es excretada por la orina, reciclada por la saliva o devuelta por la pared ruminal al rumen. Este sistema se mantiene en balance, excretando el exceso por la orina y reutilizando el nitrógeno cuando el porcentaje de este elemento en el forraje es bajo. Sin embargo, aunque el reciclaje aumenta la eficiencia de utilización de nitrógeno, se estima que el nivel mínimo de proteína cruda que el animal debe consumir es de un 7% aproximadamente.

Al fermentar el alimento, los microorganismos del rumen también producen, en diferente proporción, ácidos grasos volátiles (AGV), como el ácido propiónico, acético y butírico. La producción de estos ácidos depende de la alimentación que recibe el animal. Los forrajes con gran cantidad de pared celular, como los de la cordillera andina o aquellos forrajes que están alcanzando el estado de madurez, dan como resultado una gran proporción de ácido acético. Mientras que la alimentación con granos o concentrados, que son más energéticos, incrementan la proporción de ácido propiónico, el cual es convertido a glucosa y se almacena como glucógeno en el hígado.

La importancia de la proporción de estos ácidos está asociada al contenido de materia grasa de la leche. En general, una mayor producción de ácido acético incrementa el contenido de materia grasa. En cambio, el ácido propiónico incrementa las reservas energéticas, lo que podría ser importante para aumentar las ganancias de pesos. El incremento del consumo de energía eleva la producción de leche, pero tiende a disminuir la materia grasa; por ejemplo, al aumentar la energía de 85 a 115%, la producción de leche aumenta en un 8% y la materia grasa disminuye en un 7%.

Otros compuestos que sintetizan los microorganismos son las vitaminas del complejo B y la vitamina K, por lo que no es necesaria su incorporación en la alimentación. Las vitaminas liposolubles A, D y E deben ser proporcionadas por los forrajes.

Los minerales no solo son importantes como constituyentes del tejido animal, sino que también actúan como catalizadores de reacciones en la fermentación ruminal y en el metabolismo celular. Para tener seguridad que los minerales no son deficientes en la alimentación estos se suplementan a libre disposición. Mezclas minerales se encuentran en el comercio para este objetivo. Estas se
ofrecen a los animales en un salero (que es un cajón con mezcla mineral) que se localiza en el corral. Los animales lamen gradualmente las sales de acuerdo con sus requerimientos.

5.3. Requerimientos nutritivos

Los requerimientos nutritivos de los animales están determinados por el metabolismo basal (o requerimientos nutricionales básicos) y el estado fisiológico de los animales, siendo los principales los de mantención, gestación y lactancia.

5.3.1. Mantención

El estado fisiológico de mantención es aquel en que la cabra no está en etapa de producción. Sus requerimientos son solo para sostenerse sin ganar ni perder peso y cubrir sus necesidades de mínima actividad. Este estado se puede alcanzar durante largos períodos de sequía, al terminar la lactancia o antes de la preñez (ver punto 6.4., Cálculo de requerimientos nutritivos). Los animales productivos pocas veces alcanzan un estado de mantención.

5.3.2. Gestación

Los requerimientos de gestación son aquellas necesidades nutritivas por sobre la demanda de mantención, que involucran el desarrollo normal del feto, la preparación de la glándula mamaria para el nuevo período de lactancia y la producción de calostro. Experimentalmente se ha determinado que en el último tercio de preñez (últimos 50 días), el feto incrementa su desarrollo en un 75 por ciento.

5.3.3. Lactancia

Las necesidades de lactación corresponden a aquellas necesarias para producir leche. En ese periodo los requerimientos nutricionales se incrementan en relación con la cantidad de leche producida y a la materia grasa que contenga. Por tal motivo, los requerimientos deben ser ajustados de acuerdo con cómo varíen esos parámetros (ver punto 6.4., Cálculo de requerimientos nutritivos). Como referencia, al comienzo de la lactancia la producción de leche se incrementa más o menos hasta el día 29, de allí comienza a disminuir hasta que el animal es secado.
5.4. Cálculos de requerimientos nutritivos

5.4.1. Requerimientos de mantención

En el Cuadro 5.1. se indican los requerimientos nutritivos de mantención para animales de 30, 40, 50 y 60 kilos de peso. Los pesos intermedios se pueden calcular, aproximadamente, asumiendo que existe una relación lineal entre peso y requerimientos. Así, por ejemplo, los requerimientos de proteína cruda para un animal de 45 kilos se calculan de la siguiente manera: Cuadro 5.2.

La diferencia entre la cantidad de proteína cruda requerida para 40 y 50 kilos es: 91−77 = 14. Esta diferencia se divide por 10 (kilos de diferencia de peso) y el resultado se multiplica por el número de kilos existente por sobre el peso menor, en este caso 5, es decir, 14:10 = 1,4 y luego 1,4 x 5 = 7.

El valor 7 se suma a los requerimientos de proteína cruda del peso 40 kilos: 77 + 7 = 84 g.

De la misma manera se realiza el cálculo de requerimiento de energía, calcio y fósforo (Cuadro 5.2.).

<table>
<thead>
<tr>
<th>Peso cuerpo (kg)</th>
<th>Proteína cruda (g)</th>
<th>Energía digestible (Mcal)</th>
<th>Calcio (g)</th>
<th>Fósforo (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>62</td>
<td>1,99</td>
<td>2</td>
<td>1,4</td>
</tr>
<tr>
<td>40</td>
<td>77</td>
<td>2,47</td>
<td>3</td>
<td>2,1</td>
</tr>
<tr>
<td>50</td>
<td>91</td>
<td>2,92</td>
<td>4</td>
<td>2,8</td>
</tr>
<tr>
<td>60</td>
<td>105</td>
<td>3,35</td>
<td>4</td>
<td>2,8</td>
</tr>
</tbody>
</table>

Fuente: NRC, 1981.

Cuadro 5.1. Requerimientos de mantención para una cabra de baja actividad.

En condiciones de pastoreo, la acción de caminar para pastar o ramonear de una estación de pastoreo a otra, implica un gasto adicional al de mantenimiento. Las tablas del NRC 1981 (National Research Council) definen esta actividad como baja, media y alta, que implican adicionar a los requerimientos de mantención un 25, 50 y 75%, respectivamente, de los requerimientos calculados.
Cuadro 5.2. Necesidades nutritivas de mantención para un caprino de 45 kg de baja actividad.

Los Cuadros 5.1. y 5.2. tienen incluido el porcentaje para una actividad baja. Para adicionar los requerimientos de una actividad media o alta, es necesario dividir los valores de proteína cruda, energía o minerales por 1,25 y multiplicar por 1,5 para obtener la actividad media o por 1,75 para la actividad alta.

5.4.2. Requerimientos de gestación

Los requerimientos de preñez para todas las edades se indica en el Cuadro 5.3. Los valores que allí se indican se adicionan a los requerimientos de mantención, obteniéndose las necesidades totales para el último tercio de preñez (Cuadro 5.4.).

<table>
<thead>
<tr>
<th>Peso cuerpo (kg)</th>
<th>Proteína cruda (g)</th>
<th>Energía digestible (Mcal)</th>
<th>Calcio (g)</th>
<th>Fósforo (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mantención</td>
<td>84</td>
<td>2,69</td>
<td>3,5</td>
<td>2,5</td>
</tr>
<tr>
<td>Gestación</td>
<td>82</td>
<td>1,74</td>
<td>5</td>
<td>1,4</td>
</tr>
<tr>
<td>TOTAL</td>
<td>166</td>
<td>4,43</td>
<td>5,5</td>
<td>3,9</td>
</tr>
</tbody>
</table>

Fuente: NRC, 1981.

Cuadro 5.3. Requerimientos adicionales para el último tercio de la gestación de una cabra.

<table>
<thead>
<tr>
<th>Peso cuerpo (kg)</th>
<th>Proteína cruda (g)</th>
<th>Energía digestible (Mcal)</th>
<th>Calcio (g)</th>
<th>Fósforo (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Todo tamaño</td>
<td>82</td>
<td>1,74</td>
<td>2</td>
<td>1,4</td>
</tr>
</tbody>
</table>
5.4.3. Requerimientos de lactancia

Los requerimientos adicionales para la producción de leche están determinados por el porcentaje de materia grasa y la cantidad de leche producida (Cuadro 5.5.).

Siguiendo el mismo procedimiento utilizado en la determinación de las necesidades del último tercio de preñez, se obtiene el total requerido para la lactancia. En el presente ejemplo se asume que una cabra produce 1,5 litros de leche (Cuadro 5.6.).

En el cálculo de los requerimientos de lactancia hay que considerar que el volumen de producción de leche no es constante y que se incrementa desde el inicio de esta hasta el día 29, día en que se produce la máxima ordeña. Posteriormente la producción disminuye gradualmente hasta llegar, en el mejor de los casos, al día 305. Sobre la base de estos datos se preparan las dietas para cubrir los requerimientos que necesita el animal.

<table>
<thead>
<tr>
<th>Materia Grasa (%)</th>
<th>Proteína cruda (g)</th>
<th>Energía digestible (Mcal)</th>
<th>Calcio (g)</th>
<th>Fósforo (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,0</td>
<td>64</td>
<td>1,49</td>
<td>2,0</td>
<td>1,4</td>
</tr>
<tr>
<td>4,0</td>
<td>72</td>
<td>1,53</td>
<td>3,0</td>
<td>2,1</td>
</tr>
<tr>
<td>5,0</td>
<td>82</td>
<td>1,57</td>
<td>3,0</td>
<td>2,1</td>
</tr>
<tr>
<td>6,0</td>
<td>90</td>
<td>1,61</td>
<td>3,0</td>
<td>2,1</td>
</tr>
</tbody>
</table>

Fuente: NRC, 1981.

Cuadro 5.5. Requerimientos adicionales para la producción de un litro de leche, con diferentes contenidos de materia grasa.

<table>
<thead>
<tr>
<th>Requerimientos</th>
<th>Proteína cruda (g)</th>
<th>Energía digestible (Mcal)</th>
<th>Calcio (g)</th>
<th>Fósforo (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mantención</td>
<td>84</td>
<td>2,69</td>
<td>3,5</td>
<td>2,5</td>
</tr>
<tr>
<td>Lactancia</td>
<td>90</td>
<td>2,42</td>
<td>4,5</td>
<td>3,15</td>
</tr>
<tr>
<td>TOTAL</td>
<td>174</td>
<td>5,11</td>
<td>8,0</td>
<td>5,65</td>
</tr>
</tbody>
</table>

Cuadro 5.6. Requerimientos nutritivos para una cabra de 45 kg que produce 1,5 litros de leche, con un 6% de materia grasa.
5.5. Comportamiento en pastoreo

La selección de la dieta es una de las características más importantes del ganado caprino. Su anatomía y fisiología hacen que su comportamiento sea particular. La movilidad de su labio superior le permite tener un grado de selección que es mayor al de vacunos y ovinos. Los caprinos alimentados con heno de alfalfa, directamente del fardo, consumen principalmente las hojas y dejan los tallos, que son los que presentan un menor contenido de proteína, mayor contenido de fibra e inferior digestibilidad. Este comportamiento hace difícil mantenerlos por mucho tiempo en la misma estación de pastoreo.

Las glándulas salivales son relativamente mayores y producen mayor cantidad de saliva que otros rumiantes, con lo que neutralizan la acidez producida en el rumen por la dieta de mayor valor nutritivo y digestibilidad que consumen. De ahí que estos animales son considerados como más eficientes en el reciclaje de nitrógeno a través de la saliva.

La teoría que explica el comportamiento del consumo de los caprinos en condiciones de pastoreo, también establece que el hígado de estos animales tiene mayor capacidad de desintoxicación para evitar los problemas producidos por el consumo de vegetales que contienen metabolitos secundarios. Existen muchas otras explicaciones que ayudan a fundamentar el comportamiento de los caprinos, como son las formas de los dientes, el paladar y otras características típicas. Pero es importante saber que ellos no comen cualquier cosa, como muchas veces se dice, sino que buscan recursos de alimentación de valor nutritivo suficiente para cubrir sus necesidades de energía y proteínas.

Durante sus largas jornadas de pastoreo, los animales aprenden que no deben comer ciertas especies o determinadas hojas o ramas de una planta. Las cabras que conocen su medio saben distinguir los tipos de ramas o especies que contienen sustancias o metabolitos secundarios que disminuyen la palatabilidad del forraje. Campesinos del área de Canela (región de Coquimbo), han observado que las cabras no consumen quebracho o alcaparra (Cassia sp) en verde, pero sí se comen las hojas secas, de ambas especies, que caen al suelo. Antes de cumplir un período de prueba o adaptación, estos animales no consumen alimentos desconocidos.
También la cabra tiene preferencia por todas las categorías gustativas de los sabores en relación con otros rumiantes (dulce, salado, amargo) y toleran mejor las sustancias secundarias, particularmente los taninos presentes en arbustos y árboles de zonas con precipitaciones limitadas.

La digestibilidad, el valor nutritivo o composición química, el estado fenológico, la época del año, disponibilidad de agua y, en menor proporción, la topografía, son factores que también inciden en el comportamiento de los animales en el pastoreo.

5.6. Suplementación

En sistemas productivos desarrollados sobre la base del pastoreo, generalmente, la disponibilidad de forraje no permite cubrir todos los requerimientos para lograr el potencial productivo de los animales, más aún si es en praderas naturales dependientes de las lluvias de la temporada. En tales condiciones la suplementación con forraje de mejor calidad y concentrado es una buena alternativa de manejo.

5.6.1. Gestación

La primera necesidad de suplementación es durante la gestación, particularmente en el último tercio, momento de mayores requerimientos nutricionales que coincide con la escasez de forraje herbáceo de otoño.

La suplementación durante los últimos 45 días de la gestación, aumenta la producción de leche, con lo que disminuye la mortalidad entre nacimiento y destete. También reduce la tasa de aborto, incrementa el peso de parición, el peso de nacimiento y el peso al destete (Cuadro 5.7.).

En INIA Los Vilos al suplementar cabras criollas en preparto, con diferentes cantidades de heno de alfalfa en rama (600, 1.200 y 1.800 g/día) se produjo: un aumento de peso los últimos 18 días de preñez; un aumento de la condición corporal los últimos 32 días de la gestación y una mayor producción de leche los primeros días postparto (Figuras 5.2., 5.3. y 5.4.). Los pesos de nacimiento de las crías (hembras y machos) también fueron mayores.
Cuadro 5.7. Efecto sobre el comportamiento reproductivo, mortalidad de crías y peso cuerpo de cabras con y sin suplementación en el preparto.

El efecto de la suplementación de preparto en la producción de leche es mínimo y se diluye con el tiempo (Figura 5.2.). Sin embargo, es importante sobre el estado nutricional del animal a la parición (Figura 5.3.).

![Figura 5.2. Efecto de la suplementación preparto en el peso de cabras.](image-url)
Con los animales de condición corporal media, es decir, que no están gordos ni tampoco flacos, son con los que se obtienen mejores resultados. Los animales que al final de la gestación se mantienen o mejoran su condición no requieren ser suplementados.

5.6.2. Lactancia

Durante la lactancia las necesidades nutritivas se incrementan en relación con las requeridas en el último tercio de la preñez. Al no contar con los nutrientes necesarios, se perjudica la producción de leche y la persistencia de la lactancia.
Como ya se ha expresado, en los primeros días de lactancia la cabra moviliza sus reservas energéticas para producir leche, lo que la hace perder peso y condición corporal (Figura 5.5.), y si su condición es baja a la parición, la producción de leche y la persistencia son afectadas. Por lo tanto, las cabras suplementadas con 600 gramos de heno de alfalfa durante los últimos dos meses de gestación y en la lactancia, mantienen su peso y condición corporal con un efecto significativo sobre la producción de leche y persistencia de la lactancia. La suspensión de los alimentos suplementarios a los sesenta días de lactancia produce una disminución abrupta de la producción de leche. La suplementación en solo una de las etapas, no permite alcanzar la producción de leche que se obtiene con animales suplementados en ambos períodos (Figura 5.6. y Cuadro 5.8.).

La suplementación debe ser entregada en la tarde, después del pastoreo, para obligar a los animales a que pastoreen durante el día y disminuir la tasa de sustitución con alimentos adicionales, ya que como se ha explicado estos son un suplemento a lo que consumen durante las horas de pastoreo (Figura 5.7.).

La suplementación durante la lactancia permite a la cabra recuperar más rápido su condición corporal y lograr mejor estado nutricional para enfrentar el siguiente período de encaste, favoreciendo positivamente este manejo. Los animales suplementados después del parto recuperan más rápido los tejidos del aparato reproductivo que los no suplementados, por lo que el intervalo entre parto y primer estro es más corto (Cuadro 5.7.). Por otra parte, es conocida la relación existente entre la condición corporal y el encaste. Datos preliminares de investigación indican que los animales en mejor condición son encastados primero y presentan mayor posibilidad de lograr partos dobles y triples.

Figura 5.5. Variación de peso, condición corporal y producción de leche de cabra.
Figura 5.6. Curvas de lactancia de cabras criollas suplementadas con heno de alfalfa durante pre y post parto.

<table>
<thead>
<tr>
<th>Días de ordeña</th>
<th>Preñez (L/cabra)</th>
<th>Lactancia 60 días (L/cabra)</th>
<th>Preñez y Lactancia 143 días (L/cabra)</th>
</tr>
</thead>
<tbody>
<tr>
<td>57</td>
<td>22,5</td>
<td>29,5</td>
<td>32,3</td>
</tr>
<tr>
<td>142</td>
<td>51,6</td>
<td>71,2</td>
<td>83,1</td>
</tr>
<tr>
<td>269</td>
<td>82,2</td>
<td>106,8</td>
<td>114,3</td>
</tr>
</tbody>
</table>

Cuadro 5.8. Producción de leche obtenida en cabras suplementadas con heno de alfalfa durante pre y post parto.

Figura 5.7. Para incrementar la producción de leche se requiere suplementación.
5.6.3. Con qué suplementar

El insumo más común utilizado por los crianeros es el heno de alfalfa. Siempre está disponible, pero su costo es relativamente alto. Otra alternativa es la utilización de forraje verde hidropónico (FVH), la mayor ventaja de este forraje es que los propios agricultores pueden producirlo y lo pueden utilizar como soiling. Su costo puede ser mayor al de la alfalfa, dependiendo del costo de la semilla y el nivel de producción que se obtenga. En invierno con temperaturas bajas, los cultivos de lenteja, trigo blanco y candeal responden mejor que maíz, porotos y chícharo. En primavera las temperaturas más altas permiten mayor crecimiento, como es el caso de la avena, que a los 14 días alcanza un crecimiento aproximado de 20 cm. Por otra parte, un kg de materia seca de avena en primavera se logra con 10,45 L de agua. En invierno la necesidad de agua por kg de materia seca es más bajo. El valor nutritivo de algunas especies utilizadas como FVH se indica en Cuadro 5.9.

Entre otras alternativas de forraje se pueden mencionar las especies de auto siembra, como el trébol subterráneo y la hualputra. Esta última se puede adquirir en el comercio o cosechar semillas del campo. Ambas especies requieren menos agua que otras plantas, además son plásticas; es decir que, a falta de agua en primavera, se puede suspender el cultivo hasta la próxima temporada o en caso de disponibilidad de agua se puede prolongar el cultivo unas semanas, Figura 5.8.

En la región existe una gran disponibilidad de Atriplex nummularia y Acacia saligna, que se pueden utilizar como heno y mezclado con alfalfa. En estos casos no incluir más de un 10 a 12% de A. nummularia y no más de 25% de A. saligna.
Otras alternativas son los granos: porotos, soya, lentejas, habas, arvejón, chicharro, avena y maíz. Los tres últimos son factibles de encontrar en la región; de hecho, son muy utilizados. Es importante tener presente que siempre deben ser mezclados con forraje para asegurar un contenido de fibra y evitar la acidez por su grado de digestibilidad. Otras alternativas son: subproductos agrícolas, residuo de cultivos, alperujo (residuo de la industria olivícola), pelón de almendra, orujo, harinilla, afrechillo, paja, pan duro, queques, residuos de feria, barrido de panadería, pajas de leguminosas y gramíneas (Figura 5.9. y Cuadro 5.10.).
<table>
<thead>
<tr>
<th>Especie</th>
<th>MS</th>
<th>PC</th>
<th>FDN</th>
<th>FDA</th>
<th>Lignina</th>
<th>Celulosa</th>
<th>Ceniza</th>
<th>Dig</th>
<th>EM Mcal/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpiste</td>
<td>24.1</td>
<td>20.6</td>
<td>24.2</td>
<td>16.0</td>
<td>3.7</td>
<td>8.9</td>
<td>7.5</td>
<td>74.4</td>
<td>2.6</td>
</tr>
<tr>
<td>Avena</td>
<td>11.0</td>
<td>13.2</td>
<td>46.9</td>
<td>23.8</td>
<td>4.4</td>
<td>18.6</td>
<td>3.3</td>
<td>62.6</td>
<td>2.2</td>
</tr>
<tr>
<td>Cebada</td>
<td>2.8</td>
<td>12.1</td>
<td>44.8</td>
<td>22.7</td>
<td>2.63</td>
<td>19.1</td>
<td>4.0</td>
<td>76.6</td>
<td>2.7</td>
</tr>
<tr>
<td>Chicharo</td>
<td>18.3</td>
<td>28.1</td>
<td>16.2</td>
<td>12.6</td>
<td>2.7</td>
<td>9.9</td>
<td>4.1</td>
<td>96.1</td>
<td>3.3</td>
</tr>
<tr>
<td>Lentejas</td>
<td>12.5</td>
<td>32.7</td>
<td>21.9</td>
<td>16.5</td>
<td>4.93</td>
<td>11.8</td>
<td>4.5</td>
<td>86.4</td>
<td>3.0</td>
</tr>
<tr>
<td>Trigo blanco</td>
<td>9.6</td>
<td>17.4</td>
<td>40.1</td>
<td>19.3</td>
<td>2.77</td>
<td>16.5</td>
<td>3.5</td>
<td>81.3</td>
<td>2.8</td>
</tr>
<tr>
<td>Trigo candeal</td>
<td>10.4</td>
<td>25.6</td>
<td>36.2</td>
<td>17.4</td>
<td>2.93</td>
<td>14.8</td>
<td>3.9</td>
<td>83.4</td>
<td>2.9</td>
</tr>
</tbody>
</table>

FVH: forraje verde hidropónico; MS: materia seca; PC: proteína cruda; FDN: fibra detergente neutro; fibra detergente ácido; EM: energía metabolizable Mcal/kg; Dig: digestibilidad %.

Cuadro 5.9. Composición química (bMS) del forraje verde hidropónico, posibles de utilizar en la alimentación de caprinos.

Figura 5.9. Alperujo y pelón de almendra, alternativas para la alimentación.
Cuadro 5.10. Contenido de materia seca, Proteína, Energía y Digestibilidad de algunos insumos usados en alimentación animal.

En general, la mayor limitación en el uso de estos insumos es el contenido de proteína y energía, debido a que después de ciertos niveles de inclusión en una dieta, impiden que la mezcla tenga el contenido de proteína recomendado, como consecuencia es necesario disminuir su aporte y reemplazar por un insumo que aporte más proteína y/o energía. Otras limitaciones son el bajo contenido de paredes celulares o alta digestibilidad, esto último produce acidez ruminal, lo que puede causar la pérdida del animal.

A modo de ejemplo, si una cabra en el último tercio de preñez requiere 166 g de proteína y 4,43 Mcal tendría que consumir 5,2 kg de paja para cubrir los requerimientos de proteína y 3,1 kg para cubrir los requerimientos de energía, lo que es impracticable.
Por este motivo es necesario realizar una mezcla que se acerque más a los requerimientos de los animales. Para ello se requiere contar con un programa de formulación de dieta que realiza los cálculos en tiempo muy breve.

5.6.3.1. Formulación de una mezcla

En caso que no se cuente con un programa computacional se puede utilizar el sistema Cuadrado de Pearson. A modo de ejemplo, se calculará una mezcla para una cabra que consume 1,8 kg en gestación y que requiere diariamente 166 g de proteína cruda y 4,43 Mcal de energía digestible (Cuadro 5.4.). Esto equivale a preparar una mezcla de 92,2 g/kg de proteína cruda y 2,46 Mcal de energía digestible/kg.

<table>
<thead>
<tr>
<th>Insumo</th>
<th>PC (%)</th>
<th>Nivel de PC (%)</th>
<th>Diferencia partes</th>
<th>Proporción %</th>
<th>Contenido de ED</th>
<th>Aporte de ED, Mcal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heno de alfalfa</td>
<td>16</td>
<td>8,2</td>
<td>5</td>
<td>39,07</td>
<td>2,7</td>
<td>1,055</td>
</tr>
<tr>
<td>Paja de trigo</td>
<td>3,2</td>
<td>7,8</td>
<td>7,8</td>
<td>60,93</td>
<td>1,91</td>
<td>1,164</td>
</tr>
<tr>
<td>Total</td>
<td>12,8</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td>2,219</td>
</tr>
</tbody>
</table>

\(^1\) Requerimiento de proteína: PC: Proteína cruda; ED: Energía digestible.

Cuadro 5.11. Mezcla de heno de alfalfa y paja de trigo (mezcla A) con 8,2% de PC y sus aportes de energía digestible.

En el Cuadro 6.11. se indica la primera mezcla sobre la base de heno de alfalfa y paja de trigo, considerando 1% menos de proteína que la requerida para ajustarla a lo requerido junto con el contenido de energía. Esta mezcla se denominará A.

El valor 5 de la columna Diferencia partes (Cuadro 5.11.) es la diferencia que se produce entre 8,2–3,2 y 7,8 de la misma columna, es la diferencia entre 16–8,2. La columna siguiente, Proporción %, es el porcentaje de los valores calculados en la columna anterior, sobre la base del total, que es 12,8. La columna Contenido de ED, corresponde a los contenidos de energía de cada insumo obtenido de Tabla de composición química, el cual se multiplica por el porcentaje de proporción en la dieta para calcular el aporte de ED de la mezcla. Por lo tanto, esta mezcla contiene 8,2% de proteína y 2,219 de EM/kg. Esta dieta necesita contener 2,4 Mcal por kg por lo que es necesario ajustar a los requerimientos de energía agregando un nuevo insumo.
Para ajustar la mezcla A a los requerimientos de Energía Digestible requerido, se confecciona una nueva mezcla, esta vez se adicionará afrecho de trigo, Cuadro 5.12. El procedimiento es exactamente el mismo que el utilizado en la mezcla A del Cuadro 5.11. La única diferencia es que, en esta oportunidad, el cálculo se basa en los requerimientos de energía. Esta nueva mezcla contiene 9,43% de PC y 2,46 Mcal para proteína y energía respectivamente.

El siguiente paso es el cálculo de la proporción de cada ingrediente, Cuadro 5.13. En el caso de afrecho la proporción es 15,77. La proporción de la alfalfa es el 39,07% del 84,24% de la segunda dieta (Cuadro 5.12). De la misma forma se calcula la proporción de la paja (60, 93 de 84, 245).

<table>
<thead>
<tr>
<th>Insumo</th>
<th>ED Mcal/kg</th>
<th>Nivel de ED</th>
<th>Diferencia partes</th>
<th>Proporción %</th>
<th>Contenido de PC</th>
<th>Aporte de PC, g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dieta A</td>
<td>2,21</td>
<td>2,46</td>
<td>1,29</td>
<td>84,24</td>
<td>8,2</td>
<td>6,91</td>
</tr>
<tr>
<td>Afrecho</td>
<td>3,75</td>
<td>0,2414</td>
<td>15,76</td>
<td>16</td>
<td>2,52</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>1,531</td>
<td>100,00</td>
<td></td>
<td></td>
<td>9,43</td>
</tr>
</tbody>
</table>

1 Requerimiento de energía.

Cuadro 5.12. Segunda mezcla, considerando la mezcla A más afrecho para ajustar la Energía.

<table>
<thead>
<tr>
<th>Insumo</th>
<th>Proporción %</th>
<th>Materia seca, %</th>
<th>Tal como ofrecido (TCO) Partes %</th>
</tr>
</thead>
<tbody>
<tr>
<td>H de alfalfa</td>
<td>32,91</td>
<td>86,0</td>
<td>38,26</td>
</tr>
<tr>
<td>Paja</td>
<td>51,33</td>
<td>89,6</td>
<td>57,29</td>
</tr>
<tr>
<td>Afrecho</td>
<td>15,77</td>
<td>88,6</td>
<td>17,9</td>
</tr>
</tbody>
</table>

Cuadro 5.13. Proporción de ingredientes de la dieta expresada en Materia seca y Tal como ofrecido.

Determinada la proporción de cada ingrediente en la mezcla, se calcula la proporción sobre la base del contenido de materia seca de cada ingrediente en su forma de uso, lo que se denomina “Tal como ofrecido”. Esto se determina dividiendo la proporción de cada ingrediente en su proporción de uso entre la respectiva materia seca contenida en el alimento Tal como ofrecido. Los valores obtenidos corresponden a parte de cada ingrediente, lo que debe ser expresado en porcentaje.
5.6.3.2 Cuánto suplementar

No es fácil determinar exactamente cuánto suplemento es necesario entregar para cubrir los requerimientos nutricionales de preñez y lactancia, debido, esencialmente, a que no se sabe con certeza cuánto consumió el animal en el pastoreo. Sin embargo, en la región de Coquimbo, en condiciones normales, se sabe que los animales a pastoreo alcanzan a cubrir sus requerimientos de mantención, por lo que, en la preñez y lactancia, deben recibir nutrientes extras para el desarrollo del feto y luego para la producción de leche. En la preñez, la única alternativa para evaluar la respuesta a la suplementación es la evaluación de la condición corporal, la cual siempre debe ir en aumento para alcanzar a la parición una condición de 3,3. En la lactancia la suplementación debe ir en aumento en la medida que se incremente la producción de leche y viceversa si esta disminuye o se produce un incremento de peso. Lo normal es formular una mezcla cuyos componentes cubran los requerimientos adicionales de producción de leche. Esta mezcla se debe entregar como suplemento de manera que la producción de leche siempre se incremente. Pero si no existe el incremento, mantener o disminuir la suplementación, especialmente cuando se produce un incremento de peso.

Si no se cuenta con una dieta suplementaria para la lactancia se puede usar heno de alfalfa, sabiendo que no es la forma más adecuada de suplementar. En el Cuadro 5.13. se indican las necesidades de heno de alfalfa para incrementar diferentes cantidades de leche.

De acuerdo con los requerimientos adicionales para preñez indicados en el Cuadro 5.13. también se puede regular la cantidad de acuerdo con la condición corporal de los animales (ver Figura 2.2.). Utilizando heno de buena calidad, se requiere aproximadamente entre 0,6 a 0,8 kg por animal. Como valores referencia, la suplementación de lactancia requerida para incrementar 150 cc de leche adicional, expresado en heno de alfalfa, se indica en el Cuadro 5.14.
<table>
<thead>
<tr>
<th>Incremento de producción (L)</th>
<th>Necesidades de heno de alfalfa (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,150</td>
<td>0,065-0,106</td>
</tr>
<tr>
<td>0,300</td>
<td>0,131-0,211</td>
</tr>
<tr>
<td>0,450</td>
<td>0,196-0,317</td>
</tr>
<tr>
<td>0,600</td>
<td>0,262-0,422</td>
</tr>
<tr>
<td>0,750</td>
<td>0,327-0,528</td>
</tr>
<tr>
<td>0,900</td>
<td>0,392-0,633</td>
</tr>
<tr>
<td>1,000</td>
<td>0,436-0,704</td>
</tr>
</tbody>
</table>

Cuadro 5.14. Rango de necesidades de heno de alfalfa requerido para obtener incrementos de producción de leche con 5% de materia grasa.

Para estos cálculos se ha considerado una composición química de la alfalfa de 16% y 2,66 Mcal de proteína cruda y energía digestible respectivamente. Estos valores se obtienen de tablas de composición de alimentos o de análisis químico de muestra del heno que será utilizado. En este caso, el menor rango establecido en el Cuadro 5.14. satisface los requerimientos de proteína, pero no los de energía. En cambio, el mayor rango satisface los requerimientos de energía, pero los de proteína se entregan en exceso, por ello existe la necesidad de cálculo de mezclas más balanceadas.

Para lograr un buen manejo de la suplementación es necesario evaluar la respuesta de los animales. En forma práctica, se debe procurar que los animales consuman todo lo entregado y evitar la selectividad del forraje ofrecido. Así mismo, se recomienda ir ajustando la cantidad de forraje de manera que los animales no rechacen más allá de un 10%.

En el caso de la suplementación en el último tercio de preñez, es necesario preocuparse que los animales mantengan una condición media. Las condiciones “gordas” a “muy gordas” no solo implican pérdida de suplemento, sino que pueden aumentar las probabilidades de problemas en el parto.

En la lactancia se requiere balancear el incremento de producción de leche, el estado nutricional y el suplemento entregado, según la fase en que se encuentre la lactancia. En la primera fase el potencial es alto y la suplementación estará limitada solamente por la capacidad de consumo y selectividad, debiéndose evitar el rechazo de suplemento como se explicó previamente. En la segunda fase es necesario, además, impedir el incremento excesivo de la condición corporal, porque es índice de que el animal alcanzó su máximo potencial de producción y el excedente de alimentación está siendo utilizado en incrementar las reservas energéticas y no la producción de leche.
CAPÍTULO 6.
MEJORAMIENTO ANIMAL

Una vez que el nivel de producción de un rebaño ha alcanzado su máximo potencial y no exista mayor posibilidad de mejorar otros factores de producción, el mejoramiento a través de selección y cruzas es el único camino para aumentar la capacidad productiva de un plantel.

6.1. Cruzamiento

Mejorar la capacidad productiva de un rebaño por medio de cruzamiento implica la introducción de un reproductor con superioridad genética. Algunos conceptos de genética importantes de conocer son heredabilidad, repetibilidad, presión de selección y ganancia genética.

6.1.1. Heredabilidad (h^2)

Es el porcentaje de una característica transmitida de los padres a sus hijos. A veces para que una característica se exprese, además de haber sido heredada, necesita de un ambiente propicio. Los caracteres que para expresarse dependen en mayor proporción de la genética que del ambiente, se definen como de alta heredabilidad y son los que se manifiestan más rápido cuando se seleccionan para mejoramientos genéticos. En cambio, con los de baja heredabilidad, que implican una mayor dependencia de factores ambientales que genéticos, el mejoramiento es lento. Por ejemplo, el color del pelo es una característica de alta heredabilidad, pues depende casi exclusivamente de la genética, en tanto que la producción de leche es de heredabilidad media, siendo 0,3 el valor más citado para esta característica, lo que significa que en un 30% depende de la genética y el 70% restante de los factores ambientales y la interacción de estos. La materia grasa de la leche y otros constituyentes también poseen heredabilidad media. En caprinos no existen antecedentes de la h2 de la conformación (ver punto 6.2.1.), pero de acuerdo con los antecedentes que se tienen en vacunos y ovinos, se asume que las características de conformación tienen baja heredabilidad.

6.1.2. Repetibilidad

Corresponde al grado con que un determinado carácter se repite en el transcurso del tiempo. Esta es una indicación de la capacidad de un animal para mantener la superioridad de un carácter de un año a otro. En el caso de la leche y sus constituyentes, la repetibilidad es media.
6.1.3. Presión de selección

Representa el grado de reposición que se realiza anualmente al seleccionar los animales que se mantienen en el piño y los que se eliminan. Mientras mayor es la tasa de reposición, mayor es la presión de selección. Es decir, mientras menos tiempo permanezca un animal en un piño, más rápido se produce el mejora-
miento.

6.1.4. Ganancia genética

Esta variable está determinada por la heredabilidad, repetibilidad y presión de selección, en su conjunto. Corresponde al mejoramiento genético que se pro-
duce de una temporada a otra. Para la producción de leche, la tasa de ganancia genética se encuentra entre un 1,5 y un 3% al año.

Las mayores tasas de ganancia genética se logran cuando se llevan registros que permiten seleccionar las mejores cabras para cruzarlas con el macho mejorador. Con el uso de inseminación artificial, en vez de monta natural, se puede incre-
mentar más aún la tasa de ganancia genética, porque es más fácil distribuir los carac-
teres de un excelente animal a un mayor número de hembras.

Muchas veces se importan animales no adaptados al medio local, lo que puede producir más problemas que beneficios. Los mayores problemas están relacio-
nados, por ejemplo, con bajas o altas temperaturas, humedad ambiental, baja disponibilidad de forraje de pastoreo, topografía o problemas sanitarios, condi-
tiones que pueden afectar los niveles de producción de los animales. Esto mu-
chas veces implica también la necesidad de traer un mayor número de machos con el objetivo de ampliar el número de familias y disminuir la probabilidad de consanguinidad.

Una buena alternativa es el cruzamiento de animales criollos con animales de mayor capacidad productiva desarrollados localmente. De hecho, los animales criollos son producto de la combinación de diferentes razas españolas que fue-
ron introducidas al país y que por cientos de generaciones se han adaptado a las condiciones regionales, a la vez que han sido sometidos a selección natural. Si en algún momento existió mejoramiento genético, este fue por medio de la introducción de animales de la raza Anglo Nubian; sin embargo, no ha existido selección por niveles de producción y, en consecuencia, los animales son de bajo potencial productivo, en su mayoría.

Los valores indicados en los Cuadros 6.1 y 6.2 corresponden a valores de pro-
ducción de animales híbridos evaluados en dos predios de criar cerreros y animales
mantenidos estabulados en Las Cardas, región de Coquimbo (georeferenciación para los externos). En general hubo un incremento de la producción. Sin embargo, todavía existe un potencial de producción, ya que los valores de producción de los híbridos en campo de crianceros fueron menores a los obtenidos con los mismos tipos de animales estabulados en Las Cardas.

<table>
<thead>
<tr>
<th>RAZA</th>
<th>TEMPORADA 2002/2003 (1 PARTO)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lactancia (Días)</td>
<td>Producción (L)</td>
<td>Producción Diaria (L)</td>
<td></td>
</tr>
<tr>
<td>Criolla Tambillos</td>
<td>87 a</td>
<td>113,4 a</td>
<td>1,28 a</td>
<td></td>
</tr>
<tr>
<td>Hibridas Tambillos</td>
<td>80 b</td>
<td>80,0 b</td>
<td>1,02 a</td>
<td></td>
</tr>
<tr>
<td>Criolla Yerba Loca</td>
<td>98 b</td>
<td>71,0 b</td>
<td>0,71 a</td>
<td></td>
</tr>
<tr>
<td>Hibridas Yerba Loca</td>
<td>165 a</td>
<td>159,0 a</td>
<td>0,93 a</td>
<td></td>
</tr>
<tr>
<td>Hibridas Las Cardas</td>
<td>224</td>
<td>193,0</td>
<td>0,87</td>
<td></td>
</tr>
<tr>
<td>Hibridas</td>
<td>147 a</td>
<td>138,01 a</td>
<td>0,99 a</td>
<td></td>
</tr>
<tr>
<td>Criollas</td>
<td>93 b</td>
<td>92,31 b</td>
<td>0,94 a</td>
<td></td>
</tr>
</tbody>
</table>

Las letras distintas en una misma localidad indican diferencias estadísticas (P< 0,05).

<table>
<thead>
<tr>
<th>RAZA</th>
<th>TEMPORADA 2002/2003 (1 PARTO)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lactancia (Días)</td>
<td>Producción (L)</td>
<td>Producción Diaria (L)</td>
<td></td>
</tr>
<tr>
<td>Criolla Tambillos</td>
<td>208 a</td>
<td>125 b</td>
<td>0,59 b</td>
<td></td>
</tr>
<tr>
<td>Hibridas Tambillos</td>
<td>220 a</td>
<td>275 a</td>
<td>1,30 a</td>
<td></td>
</tr>
<tr>
<td>Criolla Yerba Loca</td>
<td>87 a</td>
<td>37</td>
<td>0,42</td>
<td></td>
</tr>
<tr>
<td>Hibridas Yerba Loca</td>
<td>80 a</td>
<td>40</td>
<td>0,50</td>
<td></td>
</tr>
<tr>
<td>Hibridas Las Cardas</td>
<td>241</td>
<td>257</td>
<td>1,07</td>
<td></td>
</tr>
<tr>
<td>Hibridas</td>
<td>231 a</td>
<td>263 a</td>
<td>1,17 a</td>
<td></td>
</tr>
<tr>
<td>Criollas</td>
<td>208 a</td>
<td>125 b</td>
<td>0,59 b</td>
<td></td>
</tr>
</tbody>
</table>

Las letras distintas en una misma localidad indican diferencias estadísticas (P< 0,05).
Finalmente, como mejor opción, existe la necesidad de seleccionar animales criollos. Para ello se requieren registros de producción, con el objetivo de seleccionar a aquellos más productivos en cuanto a leche y a crecimiento de cabritos.

6.2. Selección

Consiste en la eliminación de todos aquellos animales que presentan problemas que limitan la producción del piño. La selección se realiza sobre la base de la conformación física de los animales y de algunos antecedentes posibles de obtener de los registros productivos, tales como tamaño y conformación corporal, características de la ubre, rusticidad, fecundidad, prolificidad, facilidad de ordeña y producción de leche.

Los diferentes caracteres están relacionados entre sí tanto en forma positiva como negativa, o sea el mejoramiento puede implicar el aumento de unos o la disminución de otros. La producción de leche y de grasa están relacionados positivamente; es decir, si se incrementa la producción de leche, se produce un alza en la cantidad de materia grasa y vice versa. Pero esta relación positiva no es proporcional, ya que el rendimiento de leche está relacionado negativamente con el porcentaje de materia grasa: si aumenta el rendimiento disminuye el porcentaje de materia grasa. Debido a las relaciones existentes entre los caracteres, es que el mejoramiento y los progresos genéticos serán mayores mientras menos caracteres se consideren para mejorar la calidad genética de los animales.

El objetivo de los productores lecheros caprinos es obtener leche en forma eficiente e higiénica. Por este motivo, la prioridad para estos productores debe ser la selección de los animales por su producción de leche.

6.2.1. Tamaño y conformación

La selección por tamaño del animal está más bien relacionada con el tamaño del abdomen, ya que es considerado como indicador de la capacidad de consumo de forraje. El mejoramiento de esta capacidad es de importancia para los animales que pastorean y ramonean en el campo, puesto que, al poder consumir mayor cantidad de material vegetal, aumentan la cantidad de nutrientes disponibles para producir leche.

Una buena cabra debe estar bien conformada (Figura 6.1.), especialmente sus miembros anteriores, los cuales deben ser bien aplanados, firmes y rectos (1); también debe poseer pezuñas bien aplanadas sobre el suelo, sin distorsiones
(2); perímetro torácico bien desarrollado (3); gran capacidad abdominal (4); ve-
nas lecheras bien desarrolladas (5); ubre bien implantada, fija al vientre y a los
muslos, no carnosa (6); pezones medianamente desarrollados, terminados en
punta hacia adelante (7); pantorrillas separadas, derechas y paralelas (8); pelvis
ancha y larga (9); grupa empinada, que no caiga rápidamente (10); línea del dorso
larga y recta (11; cara con expresión tranquila, viva y ojos brillantes (12).

6.2.2. Rusticidad

Capacidad de adaptarse al medio sin que este afecte su nivel productivo. De
preferencia deben seleccionarse animales que produzcan crías sanas y que no
presenten ningún tipo de problema, especialmente en la producción de leche y
condición sanitaria. Además debe ser un animal caminador con gran capacidad
de búsqueda de forraje.

6.2.3. Características de la ubre

Es el órgano que transforma los nutrientes transportados por el torrente sanguí-
neo en leche, por lo tanto, es necesario fijarse bien en su conformación (Figura
6.2.). La ubre debe estar bien implantada entre los muslos y el abdomen, espe-
cialmente en aquellos animales que pastorean y ramonean.

Si son pendulares normalmente sufren de hematomas constantes por su movi-
miento al caminar. Un tamaño grande no necesariamente es sinónimo de mayor
producción de leche, ya que puede que la ubre esté conformada por tejido adi-
poso que no produce leche, en vez de tejido productor de leche. Aparentemen-

Figura 6.1. Características de conformación para seleccionar cabras.
te, la capacidad lechera de la ubre se relaciona más con el largo que con otras medidas, como la circunferencia o el ancho. Una disminución en volumen de la ubre y regresión en su tamaño, después de la ordeña, es sinónimo de buena producción.

Figura 6.2. Una buena ubre es fundamental en la selección de los animales.

6.2.4. Fecundidad y prolificidad

La fecundidad es un índice productivo porcentual que relaciona el número de cabras paridas con el número de las encastadas. Mientras más alto es el porcentaje, más eficiente ha sido el encaste. Los animales secos, encastados y no paridos, deben ser eliminados del piño. Son comunes para este índice valores de 1 (100%); sin embargo, por efecto de situaciones anormales, obtener valores sobre 90% es aceptable.

La prolificidad corresponde al número de crías nacidas por cabras paridas. Lo más común es lograr un 181% de prolificidad, pero es aceptable hasta un promedio de 143%. Adicionalmente es importante conocer el porcentaje de mellizos. Se puede considerar aceptable valor de 56,7%, aunque es posible obtener hasta un 80% de mellizos. Aunque el resultado de estos parámetros muchas veces son expresiones de la condición corporal de los animales al encaste, son índices que se pueden mejorar al eliminar los que presentan problemas reproductivos. Los animales melliceros han demostrado que pueden producir más leche que aquellas hembras que paren solo una cría.

Otro índice importante es el de encaste (crías destetadas/cabras encastadas). Este índice puede ser importante en aquellos sistemas en que las crías se mantienen a toda leche con su madre.
6.2.5. Facilidad de ordeña

La ordeña es el proceso más importante en la lechería, por esta razón es necesario seleccionar o eliminar aquellos animales que presentan dificultades en este proceso. En la ordeña manual es muy importante eliminar aquellos animales y sus descendientes que producen dificultades al ordeñador. Normalmente en el campo se dice "de pezón duro", al referirse a aquellos animales que son difíciles de ordeñar. El caso contrario, animales fáciles de ordeñar, se los caracteriza como animales "de pezón blando", al punto que la ubre llena no es capaz de retener la leche que produce debido a la debilidad del esfínter del pezón. Habitualmente, son animales que presentan mayor facilidad para contraer mastitis, por tener un esfínter de pezón que permite el paso fácil de microorganismos como *Salmonellas*, *E. Coli* o *Streptococcus*. En ambos casos son animales problemas que deben ser eliminados.

6.2.6. Producción de leche

Factor de mucha importancia en la selección. Por este motivo siempre deben seleccionarse los descendientes de cabras de buena producción de leche, considerando los datos de producción hasta el cuarto parto, ya que en caprinos en el quinto parto la producción comienza a disminuir. Asimismo, cabe recordar que las hembras que paren dos crías producen más leche que aquellas que producen solo una. También los animales de parición temprana (junio) tienden a producir más leche que aquellos de parición tardía (agosto), aparentemente debido al mayor período de tiempo que transcurre antes del inicio del período estral.

La selección para producción de leche requiere mantener los registros de producción láctea por animal y la identificación de los factores: edad, tipo de parto y estación de parto. Un buen índice es la cantidad máxima de leche en un determinado día, lo que ocurre muy cerca después del parto, entre los 28 y 32 días, que expresa la capacidad genética del animal. Otros índices son el total de litros de leche durante todo el período de lactancia y el número de días de lactancia. Este último es más dependiente de las condiciones del medio.

Los antecedentes publicados señalan para los animales criollos una producción promedio de 150 litros de leche por lactancia, nivel bastante bajo puesto que, en la región de Coquimbo, las metas iniciales pueden y deben fijarse sobre los 400 litros de leche en 260 días de lactancia. Con volúmenes menores no se alcanza a cubrir los costos de un sistema productivo eficiente, con fuerte componente de alimentación suplementaria.
No hay que olvidar que la cabra criolla de la región de Coquimbo se originó de razas españolas ingresadas al país desde la época de la conquista y que en la actualidad estas razas en sus lugares de origen, tripican o cuadripican la producción de leche de las criollas de la región. Probablemente, el factor de mayor relevancia para alcanzar esos niveles productivos ha sido la selección.

Otro de los parámetros de importancia que se debe considerar en la selección es la persistencia de la producción de leche. Existen animales que después de alcanzar un máximo declinan fuertemente, teniendo baja persistencia, y otros que mantienen altos niveles, es decir, tienen baja declinación y alta persistencia. Los animales que poseen esta última característica son deseables como una forma de incrementar el nivel de producción y el largo de la lactación.

De los componentes de la leche, la selección por materia grasa ha sido de mucha importancia por la comercialización de la grasa como mantequilla. Pero en la actualidad su importancia está disminuyendo debido a la presencia de sustitutos. Dado que el queso no es otra cosa que la coagulación de la proteína de la leche, es importante incrementar los contenidos de proteína.
CAPÍTULO 7.
SANIDAD ANIMAL

Los niveles potenciales de producción son logrados en animales que no presentan enfermedades. Por este motivo es que las acciones que se lleven a cabo con los animales deben ser principalmente de orden preventivo y estar basadas en un programa sanitario pre-establecido (Figura 7.1.).

Figura 7.1. Medicinas, vacunas y antiparasitarios son elementos necesarios para mantener una buena sanidad de los animales.

7.1. Medidas generales que se deben considerar en un programa sanitario

7.1.1. Evitar la exposición de los animales a organismos o situaciones que puedan inducir a enfermedades

Mantención de una buena higiene: todos los lugares donde se realizan los diferentes manejos de los animales (corrales, sala de ordeña, bodegas, y otros) deben mantenerse limpios, ordenados y desinfectados, incluyendo los equipos y materiales utilizados. De vital importancia es el manejo de ordeña, particularmente en relación con la higiene de la ubre. Para ello, es necesario eliminar todos los residuos orgánicos que puedan transmitir infecciones o enfermedades, como son restos de placenta, fetos, animales muertos o desechos de materiales utilizados para curar animales.
Aislación o cuarentena de animales nuevos: los animales nuevos, antes de ser introducidos al piño, deben dejarse por algún periodo en cuarentena, donde se les aplica medidas para prevenir posibilidades de contagio del resto de los animales; por ejemplo, suministro de antiparasitarios internos y externos.

Erradicación de enfermedades: para eliminar las enfermedades del piño, en muchos casos, es necesario deshacerse de los animales afectados o que son positivos a la reacción antígeno-anticuerpo. En este sentido, con el Programa de Sanidad Caprina financiado por el Gobierno Regional, se está haciendo un esfuerzo para erradicar enfermedades como brucelosis, tuberculosis y paratuberculosis en la zona. Los animales que presentan reacción positiva dos veces son eliminados.

7.1.2. Mantenimiento de alto nivel de resistencia a enfermedades

Condición nutricional: los animales mantenidos en buenas condiciones nutricionales a la vez de desarrollar mejor sus potencialidades productivas, adquieren más resistencia a los contagios de cualquier tipo. La falta de agua, alimentos, minerales y vitaminas provocan debilidad en el animal, dejándolos más expuestos a las enfermedades.

Utilización de vacunas: existen enfermedades que la mejor forma de mantenerlas controladas es con vacunas. Un clásico ejemplo es la enterotoxemia, que puede inducir a la pérdida de muchas crías, debido a que se presenta en forma repentina y no es fácil su reconocimiento. Tampoco los tratamientos son efectivos, porque el reconocimiento es demasiado tardío.

Selección de animales sanos y resistentes a enfermedades: como la máxima potencialidad productiva se logra con animales sanos, los animales que presentan alguna anormalidad deben ser retirados del piño, con lo que, aparentemente, se eliminan los genes poco resistentes a una determinada enfermedad. Conocida es la rusticidad de los animales criollos de la región de Coquimbo, característica adquirida por selección natural a la que han estado expuestos, por muchas generaciones, desde que fueron introducidos a la región.

7.1.3. Prevención de la propagación de enfermedades

Aislación de animales enfermos: los animales enfermos y los que están siendo tratados deben ser aislados del piño. De esta manera, se puede observar con mayor facilidad la evolución de la enfermedad y se disminuye la probabilidad de diseminarla al resto del piño.
Diagnóstico temprano y acertado: con el objetivo de detectar a tiempo las enfermedades es necesario observar constantemente a los animales. Tener un diagnóstico acertado y temprano permite tomar las medidas pertinentes para iniciar el control y evitar los contagios al resto de los animales.

Aplicación efectiva de tratamiento a los animales enfermos: la aplicación efectiva permitirá no solo controlar la enfermedad, sino que también realizar el control a menor costo.

La diversidad ecológica y de sistemas productivos hace bastante difícil un programa sanitario general para toda la población caprina de la región, debiendo adecuarse a situaciones particulares de cada área. A modo de ejemplo, el programa de control de parásitos es distinto en condición de riego que en condición de secano.

7.2. Enfermedades más comunes del ganado caprino

7.2.1. Diarrea neonatal

Causa. La diarrea neonatal es uno de los problemas más frecuentes en los primeros días de vida de la cría. Es causada, por *Echerichia coli*, *Salmonella sp* y *Cryptosporidiosis*, en conjunto, probablemente, con otras bacterias patógenas, virus y protozoos como la *Coccidia*. Es muy fácil que después del nacimiento las crías inhalen e ingieran estas bacterias, virus y protozoos del medio ambiente. La presentación de la enfermedad depende del número y virulencia de los organismos ingeridos y del grado de inmunidad que haya adquirido la cría mediante los anticuerpos del calostro.

Se asocia con mayor frecuencia a la crianza intensiva, cuando las crías son alimentadas con sustitutos lácteos, manejados descuidadamente en cuanto a su higiene y la de los utensilios donde se preparan, contenedores (bar lácteo o maderas) y chupetes. A la falta de limpieza se suma la humedad que pueda haber en los corrales. En condiciones extensivas, la incidencia de diarrea puede incrementarse, además, por exceso de calor, humedad o frío.

Control. Tres son los aspectos necesarios que se deben considerar en el éxito del control de la enfermedad.

- Higiene. Los corrales de parición y los corrales de las crías deben estar siempre limpios y secos. La humedad favorece la incidencia de *Coccidiosis* causada por protozoos del género *Eimeria*, una de las causantes de diarrea en las crías.
- Consumo de calostro. La susceptibilidad de las crías a la enfermedad depende de la inmunidad que hayan adquirido al consumir el calostro. Por ello es necesario que la madre tenga una buena condición corporal para que produzca calostro suficiente, en volumen y calidad. También debe asegurarse que el recién nacido consuma todo el calostro posible.
- Constante observación. Durante el período de crianza debe observarse constantemente a las crías para detectar tempranamente los problemas de diarrea, ya que la probabilidad de éxito es mayor con tratamiento precoz.

Tratamiento. Las crías afectadas deben ser trasladadas a lugares limpios, secos y temperados, donde se debe realizar lo antes posible una terapia de hidratación con electrolitos, por ejemplo, cloruro de sodio (sal común), cloruro de potasio, bicarbonato de sodio, glucosa o glicina para evitar que el animal se deshidrate. Estas soluciones deben dosificarse cada 6 a 8 horas, entregando cada vez entre 200 a 300 ml desde el momento en que se pesquisa la sintomatología. Estos productos pueden ser adquiridos en el comercio y vienen preparados.

Durante la fase de la enfermedad es necesario suspender el consumo de leche o al menos disminuirlo. En la medida que se observa mejoramiento de la diarrea, se puede incrementar levemente el consumo de leche.

En el comercio existe una variedad de medicamentos antidiarreicos y protectores intestinales como kaolinas y pectinas. Las diarreas pueden ser tratadas con diferentes antibióticos, como Neomicina, Penicilina, Estreptomicina y Nifuraldezone.

7.2.2. Enterotoxemia

Causa. La enterotoxemia es una enfermedad causada por la bacteria *Clostridium perfringens*, que normalmente vive en el sistema digestivo de bovinos, ovinos y caprinos. Este microorganismo produce una toxina que afecta a los animales de diferentes edades, causándoles la muerte.

Los cambios repentinios de alimentación o de regímenes de alimentación producen una rápida proliferación de la bacteria, lo que eleva la concentración de toxina provocando toxemia, daño neurológico y shock al animal. En la práctica, los cambios a exceso de granos, pastos suculentos (tiernos o frescos) y los cambios de alimentos de las crías al destete, predisponen a la enterotoxemia.

Generalmente la enterotoxemia es de difícil diagnóstico, pero existen algunos síntomas que permiten identificarla, tales como la pérdida de apetito, depresión profunda, dolor abdominal manifestado por el arqueo de la espalda y la muerte repentina de las crías más robustas y de mayor desarrollo.
Control. Los caprinos son susceptibles a la enterotoxemia y la única recomendación posible es vacunar a la madre 2 a 3 meses antes del parto. Esto permite mejorar la resistencia de las crías a través del calostro. Las crías, a las 3 a 6 semanas de edad, también deben ser vacunadas.

7.2.3. Tuberculosis

Causas. Los caprinos son susceptibles a la tuberculosis y pueden ser reservorios de la infección que ataca a los vacunos y también a los humanos. En los caprinos es causada comúnmente por Mycobacterium bovis, pero también puede ser producida por M. avium y M. tuberculosis. Los síntomas más marcados son los problemas respiratorios y la disminución de peso.

Control. La tuberculosis es una de las enfermedades consideradas en el programa de sanidad caprina en la región de Coquimbo para su erradicación. El control contempla la eliminación de los animales positivos al test de la tuberculosis.

7.2.4. Paratuberculosis

Causas. Conocida también como la Enfermedad de John's, es causada por Mycobacterium paratuberculosis, razón por la cual el diagnóstico de animales positivos se cruza con el diagnóstico de tuberculosis.

Esta enfermedad se produce en animales de 3 a 5 años. Entre sus síntomas están la pérdida de peso, pelaje áspero, disminución de la producción de leche, disminución del apetito y depresión. La bacteria es resistente a condiciones ambientales; puede mantenerse viable en fecas y bodegas por más de un año.

Control. No se conoce un tratamiento efectivo. Debe ser considerada como un problema del piño y no de un animal individual. Los animales infestados deben ser removidos y eliminados. También es necesario mejorar la higiene para evitar nuevas infecciones y vacunar para incrementar resistencia. También deben introducirse animales de dudosa procedencia, a no ser que se compruebe que es negativo al test de la tuberculina. Esta enfermedad también es controlada por el programa de sanidad caprina de la región de Coquimbo.

7.2.5. Linfoadenitis caseosa

Causas. Es una enfermedad crónica e infecciosa causada por la bacteria Corynebacterium pseudotuberculosis. La bacteria produce inflamaciones de los nódulos linfáticos y abscesos que se localizan en los lugares indicados en la Figura 7.2.
La bacteria ingresa al cuerpo del animal por pequeñas heridas en la piel o por las mucosas. La incubación, antes de que se desarrolle el absceso con pus, puede demorar de 6 meses. Este absceso se puede romper y eliminar el material espontáneamente, contaminando el ambiente e infestando a otros animales.

Figura 7.2. Localización de los abscesos e inflamaciones de los nódulos linfáticos afectados por C. pseudotuberculosis.

Control. Es una enfermedad de difícil control. Normalmente la causa de la diseminación es la introducción de animales infestados al piño. Los animales de alto valor económico que presentan abscesos pueden ser tratados, pero deben ser aislados del resto de los animales. En tanto los que no cumplen con esta característica es preferible eliminarlos. Las crías deben ser separadas de sus madres para evitar contagio. Como la enfermedad se contagia por medio de heridas, es importante mantener la infraestructura de corrales libre de elementos que produzcan cortes, como alambres y clavos.

Todo el instrumental utilizado con los animales debe ser esterilizado, con el objetivo de evitar la transmisión de enfermedades de un animal a otro. La esterilización del instrumental puede realizarse sometiéndolos a agua hervida por unos minutos. Los lugares donde se aislan los animales enfermos o que han sido contaminados con pus, deben ser desinfectados y lavados. Todo el material contaminado debe ser quemado.

Tratamiento. Como ya se dijo, en situaciones especiales es posible tratar a los animales. Con una jeringa y con una aguja se extrae la pus del absceso, teniendo cuidado de no contaminar el ambiente (la pus debe ser quemada). Luego, para desinfectar el absceso con otra jeringa se introduce formalina. Posteriormente se extrae la formalina y se hace una incisión para drenar el absceso y se vuelve
a desinfectar, limpiando bien el absceso. El animal tratado debe ser mantenido aislado hasta que la incisión del absceso esté totalmente sana.

7.2.6. Brucelosis

Causas. Es producida por *Brucella melitensis*, aunque las cabras también pueden ser afectadas por *Brucella abortus*. Se conoce también como Enfermedad de Bang, aborto contagioso y fiebre ondulante o de malta en los humanos. La bacteria es excretada en la leche, orina, fecas, fetos y placenta. Los animales se contagian al estar en contacto con alimentos contaminados o consumo de leche de animales enfermos. El aborto en las últimas semanas de preñez es un signo que hace pensar la presencia de la enfermedad, aunque existen otras causas que pueden producir el mismo efecto, como es la falta de nutrición. Una forma de diagnosticar la brucelosis es con el método de la seroaglutinación repetido dos a tres veces. Este método requiere enviar muestra de sangre a laboratorio. La importancia de la enfermedad radica no solo en las pérdidas económicas que produce, sino que también por su carácter zoonótico; es decir, que se transmite a los humanos.

Control. El control más efectivo es la eliminación de todos los animales positivos a la enfermedad. Debe evitarse el contacto con animales enfermos y evitar el ingreso de animales extraños al piño, especialmente si no tienen una certificación sanitaria. Es necesario dudar de aquellos animales que presenten abortos y eliminarlos; mantener rigurosamente la higiene de corrales, establos, sala de ordeña y quesería para prevenir la contaminación y la permanencia de la bacteria en el medio. Para evitar el contagio a los humanos la leche debe pasteurizarse a 72°C por 15 minutos y madurar los quesos por más de 10 días.

El programa de saneamiento caprino financiado por el Gobierno Regional controla también la brucelosis. En el primer año se analizaron 2.000 cabras y no se obtuvo reacción positiva a la enfermedad. El Servicio de Salud Regional tampoco ha detectado casos de fiebre ondulante en la región. Pero, de todos modos, se deben mantener las medidas necesarias para evitar su aparición.

7.2.7. Mastitis

Causas. La mastitis, o inflamación de la ubre, es usualmente producida por agentes infecciosos de la ubre como *Streptococcus spp*, *Staphylococcus spp*, *Corynebacterium spp* y *Coliformes*, los que actúan asociados a traumatismos, estrés y manejo deficiente de la ordeña (ver Figura 7.3.). Los síntomas de la mastitis que pueden permitir una detección temprana son la disminución de la producción de leche, cojera del animal para evitar el contacto del lado afectado de la ubre,
inflamación de la ubre, exudación, depresión, falta de apetito, leche anormal y amarillenta. Estas mismas bacterias son constituyentes de la leche y de los quesos y causan gastroenteritis, colitis, infecciones en diferentes órganos, a sus consumidores.

Control. El control más efectivo es tomar precauciones durante la ordeña. El ordeñador debe mantener siempre sus manos limpias, lavándoselas cada vez que tenga que ordeñar un animal con mastitis. Estos siempre deben ser ordeñados al final. La higiene en la ordeña tiene por objetivo no solo obtener leche sin contaminar, sino que también disminuir la posibilidad de propagar infecciones.

Para facilitar la mantención de la higiene de la ubre, al finalizar cada ordeña, el canal del pezón debe ser desinfectado antes que se cierre. Al terminar el período de ordeña la terapia es diferente; se introducen productos bactericidas por el canal del pezón para mantener la ubre libre de patógenos durante el período seco del animal. Como no es fácil diagnosticar la mastitis se recomienda usar el test de California, lo que permite establecer la mastitis subclínica. Este test consiste en aplicar unas gotas de reactivo a leche de cada medio. Leches que cambian coloración y grumosas, es índice de mastitis. El reactivo se obtiene en locales de productos agrícolas y veterinarios.

Otra medida de precaución es no apurar los animales que van al pastoreo o sala de ordeña para así evitar el golpe de la ubre.

Algunos de los productos comerciales utilizados para tratar mastitis contienen sulfoamidas, tetraciclinas, penicilinas, neomicinas, streptomycin u oxitetraciclínas. La forma de aplicación está descrita en las etiquetas de los respectivos productos.
7.2.8. Enfermedades metabólicas

Acidosis

Causas. La acidosis se produce por cambios bruscos del régimen alimenticio, principalmente al usar granos o alimentos ricos en carbohidratos altamente fermentables. Como consecuencia, se incrementa la producción de ácidos ruminales que provocan inflamación de la pared del rumen e ingresan al sistema circulatorio produciendo acidosis sistématica. El incremento de los ácidos tiene como consecuencia la disminución del pH ruminal, baja en la motibilidad (movimientos ruminales) del rumen, disminución del consumo de alimento y de la producción de leche, pudiendo, además, producir diarrea.

Control. El cambio de alimentación de forraje a concentrado con altos niveles de granos debe ser gradual con un período de adaptación, evitándose que los animales tengan acceso a consumo de granos sin control.

Tratamientos. Administración de antiácidos (bicarbonato, cada 15 a 25 h), libre disponibilidad de agua, suspensión de la alimentación y dosificación de antibiótico oral (Tetraciclinna 0,5 a 1,0 g) que ayuda a eliminar la flora intestinal productora de ácidos.

Hipocalcemia

Causas. Es conocida como Fiebre de la Leche, parecida a la de la Preñez o a la Enfermedad de la Parición, refiriéndose a la alteración metabólica de la preñez y lactancia. La hipocalcemia corresponde a un desequilibrio del balance calcio/fósforo, producto de un repentino aumento de la disponibilidad de nutrientes en relación con las capacidades de absorción de estos elementos por el intestino o reservas corporales. Los animales son afectados en la lactancia presentando hipo excitabilidad, temblores musculares, dificultades para caminar. En situaciones graves permanecen echados y no se paran o se paran con dificultad. Esta enfermedad puede ser confundida con Toxemia de la preñez, pero esta última es más repentina.

Control. La mejor forma de controlar el desbalance nutricional es manteniendo a los animales en buena condición corporal y evitando que sufran estrés nutricional. Aunque la presentación de esta enfermedad se debe a un desbalance metabólico del calcio, es más importante suplementar con una adecuada relación calcio fósforo, que suplementar solo con calcio. Una relación de 2 a 1 parece ser la más adecuada. La suplementación con sales minerales hasta tres semanas antes del parto y de forraje verde para asegurar la incorporación de vitaminas, especialmente A, D y E, disminuyen la probabilidad de desbalance.
Toxemia de la preñez

Causa. Enfermedad que se presenta en las últimas 6 semanas de preñez. Corresponde a un desorden en el metabolismo energético, que resulta del bajo nivel de azúcar en la sangre, bajos niveles de glicógeno e incrementos de cuerpos cetónicos que no pueden ser utilizados por el cerebro y que tampoco pueden cruzar la placenta para alimentar el feto. El desorden metabólico se produce ya sea por falta de consumo de alimento o por exceso de alimentación. En el primer caso el animal no puede cubrir las necesidades de energía de los fetos (usualmente fetos múltiples). En el segundo, el animal está sobrealimentado pero con bajos contenidos de fibra.

Los animales presentan anormalidades neurológicas, defecación reducida, depresión, falta de tono muscular, se recuestan y luego no se pueden levantar. Normalmente están en buen estado nutricional. La sintomatología es similar a la Fiebre de Leche, pero la toxemia de la preñez ocurre esencialmente durante la preñez tardía o último tercio de preñez.

Control. Mantener a los animales en condición corporal media, nunca flacos ni tampoco gordos, y alimentarlos con forrajes de buena calidad. La oferta de concentrado debe ser gradual y estar bajo control. Constantemente el piño debe ser observado durante el periodo en que puede ser afectado por toxemia.

Tratamiento. Incrementar el forraje tosco, dosificar con 60 ml de propylen glicol en forma oral dos a tres veces al día. Poner inyección intravenosa de glucosa (5 a 10%) mezclada con vitaminas del complejo B y las vitaminas A, D y E, especialmente si el animal no desea consumir alimento.

7.2.9. Enfermedades parasitarias

Las enfermedades parasitarias son causadas por parásitos internos y externos. Ambos tipos de parásitos generan una disminución en los niveles de producción de los animales y, como consecuencia, grandes pérdidas económicas.

Parásitos internos

Causas. Los factores que predisponen a la infestación son la humedad y las temperaturas y el pastoreo muy cerca del suelo. Condiciones de primavera predisponen a las infestaciones. Los animales que se alimentan por ramoneo están menos expuestos a infestarse con algún tipo de parásito.

En la región de Coquimbo, la alta luminosidad y el largo periodo seco son coadyuvantes en el control de parásitos intestinales. Se ha demostrado que en
zonas áridas la exposición directa del sol disminuye la incidencia de parásitos. Esta ventaja, más la gran actividad de ramoneo de los animales, hace que la incidencia de parásitos intestinales sea de poca importancia. Sin embargo, existen factores que incrementan el problema; por ejemplo, el sobrepastoreo, la baja condición corporal y un estado sanitario deficiente. El sobrepastoreo implica una mayor carga animal por superficie y tiempo y los animales se ven obligados a extraer una mayor cantidad de forraje, obteniéndolo cada vez más cerca del suelo. Por otra parte, mientras más animales, mayor es la cantidad de fecas por superficie, lo que ayuda a los parásitos a completar su ciclo biológico. Los adultos desarrollan resistencia a la infestación parasitaria por lo que la incidencia de infestaciones es menor que en los animales jóvenes. Los animales malnutridos están más expuestos a infestaciones parasitaria; especialmente en los animales jóvenes.

La mayoría de los parásitos intestinales, redondos, planos y la fasciola, en algunas etapas de su desarrollo necesitan humedad para continuar su ciclo. Por lo que los sectores de las aguadas usados en los sistemas extensivos son una fuente de infestación. Allí los animales beben, defecan y consumen el pasto que se desarrolla con la humedad, dándose las condiciones ideales para la infestación parasitaria.

Algunos de los síntomas de la infestación parasitaria son: anemias, mucosa pálida en los ojos y boca, pérdida de peso, disminución de crecimiento, disminución de la producción de leche, estado lánguido, pelaje descolorido, diarrea, heces con mucosas y sangre. En casos graves es posible observar huevos de los parásitos en las fecas.

Control. Para prevenir y controlar las infestaciones, los corrales deben mantenerse limpios y secos, hacer rotación del pastoreo, mantener la condición corporal, dar una alimentación balanceada, evitar la contaminación de los alimentos con materiales fecales y hacer tratamientos periódicos con antiparasitarios. Mención especial merece el manejo de aguadas, las cuales deben aislarse instalando un cerco a su alrededor, teniendo que sacar el agua a contenedores o bebederos con una manguera, de modo que los animales no se introduzcan a ellas y no las contamen con fecas y orina. Con ello se evita también el consumo de forraje que se desarrolla en las proximidades (Figura 7.4.).

La mayor parte de los antiparasitarios que son eficientes en el control de los parásitos internos son de la familia de los Benzimidazoles (Thiabendazole, Fenbendazole, Oxfendazole, Mebendazole), Avermectin (Ivermectin) y depolizadores de membranas celulares (Levamisole). De estos, Alvedazole controla la fasciola hepática conocido también como prihuin o yuta. Para mayor efectividad estos deben ser rotados con otros productos para no generar resistencia.
Una forma sencilla y práctica para establecer el nivel de infestación de los animales es la utilización de la tarjeta de evaluación denominada FAMACHA®, desarrollada en Sudáfrica por el profesor Faffa Malan, en la Universidad de Pretoria, con la ayuda de la FAO (Figura. 7.5.). El objetivo fue buscar un método sencillo que pudieran utilizar los profesionales y ganaderos para decidir si un animal debe ser desparasitado, según el nivel de adaptación a la carga parasitaria que soporta. Adicionalmente disminuir el uso excesivo de los antiparasitarios por el nivel de resistencia de los parásitos que se está produciendo. La denominación de la técnica viene de las dos primeras letras del nombre y apellido del autor principal, más CHA de Chart.

Esta metodología se basó en el hecho que los parásitos entéricos, específicamente *Haemonchus contortus*, se alimentan de grandes cantidades de sangre, provocando anemia en el animal. De esta manera, se relacionó el nivel de hematocrito, la coloración de la mucosa conjuntiva ocular y el grado de infestación parasitaria por medio del análisis de fecas. Así, se desarrolló la tarjeta de evaluación con cinco niveles de tonalidades, desde el rojo intenso hasta el rojo pálido. El rojo intenso (nivel 1) de la mucosa ocular significa bajo nivel de parasitismo, por lo que no es necesario aplicar antiparasitario. Al contrario, el rojo pálido de la mucosa (Nivel 5) implica alto nivel de parasitismo y debe tratarse con antiparasitario. En el nivel intermedio 2, tampoco es necesario el tratamiento, pero en el nivel 3 y 4 la aplicación debe realizarse.

Los parásitos destruyen el tejido de diferentes órganos o se alimentan de sangre. Como consecuencias, los animales presentan anemia, debilitamiento general, inapetencia, pérdida de peso, disminución de condición corporal, diarrea, dismi-
nución y baja calidad de la producción, condición para enfermarse y decomiso de la carne por parasitismo e incremento del costo de producción. El faenamiento de animales en el campo, sin inspección sanitaria, puede provocar transmisión de enfermedades y parásitos a los consumidores teniendo como consecuencia enfermedades graves con riesgo vital.

Figura 7.5. Tarjeta de evaluación parasitaria, FAMACHA®.
El parasitismo de los animales no es fácil de controlar debido a que, normalmente, se encuentran en el medio donde se desarrolla la actividad ganadera, tienen gran capacidad de reproducción por la cantidad de huevos que producen, se adaptan fácilmente, son capaces de sobrevivir por largo tiempo y lo más grave es que se ha observado resistencia a los antiparasitarios. Sin embargo, en zonas áridas la sequedad y luminosidad son aliados en control de fases del desarrollo del parásito en el ambiente.

Esta es una herramienta de control adicional a otras medidas que se deben considerar. Además, permite identificar a los animales resistentes, resilientes y susceptibles. Los animales resistentes son aquellos que tienen la capacidad de eliminar o de prevenir la infección y que son detectados, porque siempre presentan nivel 1 y no requieren ser tratados con antiparasitarios. Los resilientes, son aquellos que tienen carga parasitaria, pero no manifiestan los efectos de la infección. Finalmente, los susceptibles son aquellos que tienen carga parasitaria y presentan las mucosas más pálidas y deben ser tratados.

Hidatidosis

La hidatidosis es un parásito cuyo huésped final es el perro, siendo intermediario los ovívoros, caprinos, otros herbívoros y el ser humano. El incremento de esta enfermedad puede crear un problema de salud pública. En el ser humano produce quistes, mayoritariamente en los pulmones y en el hígado, pero también en el bazo, peritoneo, riñón y otros. Requiere hospitalización prolongada, ya que obstruye los conductos biliares, produce inflamación del órgano afectado, molestias en las vías respiratorias, tos y, aunque es de tratamiento quirúrgico, puede causar la muerte. Normalmente es asintomático y se encuentra al realizar estudios de imagenología torácica.

Es causado por *Echinococcus granulosus*, cuyo gusano o tenia de 3 a 6 mm de longitud, que vive en el intestino del perro. Esta libera una gran cantidad de huevos con las heces, altamente infecciosos, contaminan el ambiente, suelo, plantas y agua. Los ovívoros y caprinos pueden entrar en contacto con este estado del parásito, adquiriendo la infestación. Por otra parte, pueden contagiarse directamente del perro. Además, en el campo existe la costumbre de alimentar a los perros con vísceras crudas cuando faenan animales, provocando la infestación directa si el animal faenado está con hidatidosis.

En el intestino, el huevo libera al embrión el cual atraviesa la pared intestinal para ingresar al torrente sanguíneo y desde allí alcanzar el hígado y los pulmones u otros órganos, desarrollándose lentamente el estado larval, quiste hidatídico o bolsa de agua. Esta bolsa puede llegar a contener un 98% de un líquido
incoloro y transparente que contiene a su vez estructuras denominadas escólex generados en vesículas localizadas en la pared del quiste. Estas estructuras son responsables de todas las manifestaciones clínicas y dan origen a otros quistes. La ruptura de estas bolsas implica la diseminación del parásito.

Control. La estrategia de control de este parasitismo consiste en interrumpir su ciclo biológico. Al faenar animales y encontrar las bolsas de agua en su interior, se debe eliminar y enterrar completamente la canal y las vísceras espolvoreándolas con cal, de manera que los perros no la puedan desenterrar ni consumir. No se debe entregar vísceras crudas a los perros y se debe desparasitar tanto a los caprinos como a los perros. Así mismo es recomendable aislar y desparasitar a los animales que llegan al predio, y evitar la entrada de perros callejeros al campo. Los antiparasitarios de la familia de los albendazoles son los más utilizados en el tratamiento para controlar al parásito.

Parásitos externos

Causa. La mayoría de los animales se infecta con parásitos externos como pulgas, garrapatas, piojos y moscas. Son pocas las veces que se presentan infecciones clínicamente detectables. La experiencia obtenida a través de los años en el Centro Experimental Los Vilos indica que son problemas solo en las crías. Estos parásitos, en general, son insectos chupadores de sangre (piojos, garrapatas y moscas) que eventualmente pueden ser vectores de otras enfermedades. Causan irritación de los animales y anemia en los casos más graves. Constantemente se puede observar que los animales buscan lugares para rascarse.

Control. Normalmente las apariciones de parásitos externos se producen por mala higiene de los corrales y dormideros, sistemas de manejo, condición corporal de los animales y condiciones climáticas. También por contacto con otros animales, lo que es frecuente en sectores donde los animales los mantienen sueltos particularmente en terrenos comunitarios. Por ello es muy importante, como en cualquier otra enfermedad, mantener la higiene de los corrales y bodegas y evitar la introducción de animales extraños al piño y evitar en lo posible el contacto con animales externos.

Tratamiento. El tratamiento consiste en el baño regular de los animales y desinfecciones de los lugares de alojamiento, previa limpieza y orden. Algunos antiparasitarios para control de parásitos internos también son efectivos para los parásitos externos, como es el caso de Ivermectín en dosis de 200 mg/100 kg con inyección subcutánea. En lo posible concordar con los vecinos la aplicación de tratamiento de todos los animales para disminuir el riesgo de contagio de parásitos.
CAPÍTULO 8.
ELABORACIÓN DE QUESOS DE CABRA

El queso es uno de los alimentos más antiguos utilizados por el ser humano. Probablemente su elaboración se inició después de las primeras domesticaciones de animales lecheros. Algunos antecedentes señalan que en el año 3.100 a.C. ya se conocía este producto.

Es el resultado del proceso de coagulación de los sólidos de la leche, especialmente de la proteína (caseína) que se transforma en paracaseinato de calcio, por acciones enzimáticas y microbiológicas. Si después son sometidos a un proceso de maduración por tres o más semanas se habla de quesos maduros o "quesos" y si se consumen de inmediato, se les llama quesos frescos o quesillos. Es un alimento de gran valor, ya que mantiene las cualidades alimenticias de la leche, aportando proteínas (aminoácidos esenciales), energía (lactosa y ácidos grasos), minerales (calcio y fósforo) y vitaminas (A, D, B, y C).

Puede fabricarse de leche de vaca, oveja o cabra, en forma separada (Cáceres y Burgos, de oveja) o en mezcla (Cabrales y Roquefort, de oveja y cabra). En Chile es elaborado esencialmente de leche de vaca y cabra.

En el mundo, los quesos de cabra son muy cotizados debido a la coloración (blancura), aroma y sabor que le imprime la leche. En Chile no es prestigiado, debido a razones higiénicas, sanitarias y de presentación. En el pasado contribuyó al desprestigio la detección de un foco de Bruselosis (Brusella melitensis) en el Cajón del Maipo. Pero el descrédito no ha sido gratuito, puesto que, efectivamente, la calidad higiénica es deficiente como consecuencia del mal manejo sanitario de los animales, de la higiene a la ordeña y de los ordeñadores, el uso de agua no potable, la mala limpieza de los utensilios usados en su elaboración, la utilización de cuajo animal para cortar la leche la deficiencia en la presentación, formas de conservación y transporte.

En el presente capítulo se describe la forma de elaborar quesos considerando las especiales características socioeconómicas de la región. Este procedimiento es uno de los cientos de procesos existentes, ya que cada quesería imprime a su producto una característica propia, determinada por el procedimiento empleado (Figura 8.1.).
8.1. Condiciones de higiene

Mantener una buena condición higiénica en el proceso de elaboración de queso es imprescindible para obtener un producto de calidad, lo que a su vez repercute en el aumento de la demanda y del precio.

El queso de cabra ha tenido una escasa demanda y bajo precio debido a los problemas sanitarios de transmisión de enfermedades como la Brucella melitensis, causante de la fiebre ondulante, y bacterias entéricas (salmonelas, coliformes y otros) causantes de enfermedades como tifus, colitis y hepatitis. Estas y otras bacterias durante la maduración afectan la presentación y producen acidez y otras sensaciones anormales en el queso.

La leche, por naturaleza, es un buen medio de cultivo para el desarrollo de la vida microbiana, de ahí la necesidad de tomar medidas para lograr un producto con baja carga microbiana y de alta calidad higiénica. Como se menciona en capítulos anteriores, los primeros problemas de contaminación se producen por mastitis, durante la ordeña, luego, por la mala manipulación de la leche y, por
último, por el quesero y por la mala higiene de los utensilios usados.

El quesero, al igual que los ordeñadores debe estar sano, libre de enfermedades, mantener sus uñas cortas y manos sin heridas. Debe lavarse y escobillarse manos y brazos y usar pantalones, chaqueta y gorro blanco, mascarilla y guantes de goma, todo muy limpio.

Los materiales de los utensilios, y su confección, no deben permitir la acumulación de residuos de la leche ni del cuajado. También es importante que sean fáciles de lavar y escobillar, a la vez que resistan las altas temperaturas a las que deben ser sometidos para eliminar toda la contaminación bacteriana.

El lavado debe hacerse con agua y soluciones desinfectantes que ayuden a la limpieza. Normalmente en lechería se utiliza soda cáustica, carbonato de sodio, cloro, hipoclorito de calcio o hipoclorito de sodio.

El acero inoxidable es el material que mejor cumple con los objetivos exigidos para la elaboración de quesos. Sin embargo, existen otros (PVC, aluminio, nylon) de menor costo, que pueden mantenerse en condiciones higiénicas adecuadas y son una solución para pequeñas queserías artesanales.

Los paños que se colocan en los moldes y prensa, cada vez que sean usados, deben lavarse con detergente y hervirse en agua.

Para evitar la contaminación, la quesería debe estar ubicada lejos y antes de los corrales y de la sala de ordeña, en la dirección del viento. Las paredes y los pisos deben ser terminados en fino para poder lavarlos fácilmente. Las paredes deben mantenerse pintadas y siempre limpias, lo ideal es que estuvieran cubiertas con azulejos o cerámica. También es conveniente pintar el piso con pintura Epóxica. Habitualmente la quesería debe ser lavada y desinfectada, especialmente al término del período de ordeña dejándola en condiciones para el siguiente período.

La sala de quesería no es un lugar para visitantes y curiosos, es un lugar de trabajo que debe mantenerse siempre limpio y ordenado. Como medida de precaución se puede establecer un pediluvio con desinfectante (carbonato de calcio) para el personal que allí trabaje.

Finalmente, las condiciones de salubridad deben ser garantizadas por la oficina de Higiene Ambiental, dependiente del Servicio de Salud de su respectiva comuna, la cual emite la resolución que autoriza la elaboración de quesos. Además, el Servicio de Salud periódicamente controla la calidad higiénica del producto elaborado, tomando muestras para hacer los análisis microbiológicos.
8.2. Recepción de la leche

El proceso de elaboración de quesos se inicia con la recepción de la leche en la quesería, la que debe estar en buena calidad higiénica. Las leches contaminadas y de mala calidad se pueden detectar y eliminar haciendo algunas pruebas sencillas para determinar el grado de acidez, la carga bacteriana, la densidad y la prueba de ebullición. En esta última se prueba si la leche se corta al ser sometida a temperaturas más altas.

La leche antes de ser usada, debe filtrarse con un paño o malla fina de modo de eliminar todas las partículas extrañas. Los filtros deben lavarse y cambiarse con frecuencia para evitar contaminación con microorganismos. Si la leche no puede entrar a proceso de inmediato después de la ordeña, debe enfriarse para mantenerla en buenas condiciones. En ausencia de estanques enfriadores, se puede dejar en los tarros lecheros sumergidos en agua (Figura 8.2.). También existen heladeras a precios razonables que se pueden utilizar para conservar leche de un día para otro, o más días, a baja temperatura.

El enfriamiento de la leche a temperaturas inferiores a 10°C provoca algunos problemas físico-químicos (disolución de fosfato y calcio) que aumentan el tiempo de coagulación, con cuajo menos firme y más difícil separación del suero.

Figura 8.2. Método práctico para enfriar la leche después de la ordeña para poder mantener su calidad.

8.3. Pasteurización

De acuerdo con el Reglamento Sanitario, la leche debe pasteurizarse para destruir las bacterias patógenas (coliformes, salmonelas, estreptococos), especialmente aquellas que causan problemas estomacales y digestivos. El reglamento también acepta la elaboración de quesos con leche sin pasteurizar, pero estos deben dejarse por más tiempo en proceso de maduración. Además, para utilizar leche no pasteurizada, es necesario asegurarse que el manejo sanitario de la
ordeña y de la leche sea de óptima calidad; es decir, sala de ordeña limpia, lavado de pezones, desinfección de pezones, control de mastitis, enfriamiento de la leche inmediatamente después de la ordeña, higiene y limpiado de envases de recolección de leche.

Con la pasteurización se higieniza la leche sin destruir sus componentes ni cualidades alimenticias. Consiste en elevar la temperatura en forma muy controlada durante un tiempo preciso; lo ideal es hacerla a 72°C por 15 segundos, pero como a nivel artesanal es muy difícil lograrlo, se recomienda realizarla a 62°C durante 30 minutos. Esto se puede lograr utilizando un quemador y olla o sencillamente una tina (ver Figura 8.3.).

La pasteurización de la leche permite un mayor rendimiento en quesos, debido a la disminución de problemas de fermentación indebida, provocados por bacterias y hongos no deseados, que hacen que el queso deba ser eliminado. Se entiende por rendimientos a la relación entre cantidad de queso producido y los litros de leche utilizados en el proceso. Por ejemplo, el rendimiento es mayor si se utilizan 8,5 en vez de 10 litros de leche para producir un kg de queso.

También la pasteurización deja a la leche en mejores condiciones para que actúen los cultivos lácticos inoculados, que producen quesos de mejor calidad, dándoles, sabor y aroma más puros, uniformes y de más larga duración. Otra ventaja es que permite realizar la maduración a temperaturas más altas, lo que ahorra esfuerzos para bajar la temperatura de la sala de maduración.

La pasteurización, lo mismo que el enfriamiento, afecta las uniones entre el calcio, fósforo y caseína de la leche, provocando insolubilidad de las sales de calcio. Este cambio químico hace que aumente el tiempo de coagulación, el coagulo resulta más blando, menos firme por lo que la separación del suero es más lenta y se pierde más materia sólida en el suero.
Para evitar este problema, tanto en el enfriamiento como en la pasteurización, las sales de calcio se pueden restituir, agregando cloruro de calcio, hasta una concentración máxima de 20 g por 100 L de leche. El cloruro de calcio se disuelve en agua y se agrega a la leche aún caliente después de la pasteurización, unos 15 minutos antes de la adición de cuajo. Cuando la leche no se pasteuriza no es necesario agregar cloruro de calcio (Figura 8.4.).

8.4. Inoculación

La pasteurización, junto con eliminar los microorganismos causantes de enfermedades y fermentaciones no deseadas, elimina microorganismos benéficos que producen la maduración y otorgan el sabor y aroma característico al queso, los cuales deben ser restituidos a la leche inoculando con cultivos lácticos especiales, de acción acidificante. La acidez impide el desarrollo de microorganismos no deseados, facilita el desuerado al disminuir la capacidad de las proteínas de absorber agua, beneficia el desarrollo de sabor ácido, debido a la formación de ácido láctico y productos de aroma (diacetil y ácidos volátiles), ayuda a formar el cuerpo y textura durante la maduración y a la formación de ojos con la producción de anhídrido carbónico (C02) en la fermentación.

Algunos cultivos utilizados y clasificados como aromáticos son *Leuconostoc cremoris*, *Streptococcus diacetylactis*, *S. cremoris* y *S. lactis*. Otras especies son *Lactobacillus bulgaris*, *L. casei*, *L. helveticus* o *L. lactis*, cada uno de los cuales imprime aroma, sabor y textura. Los cultivos lácticos vienen en forma de polvo seco (liofilizados), libres de hongos, levaduras, salmonelas, coliformes, estafilococos, listerias y otros patógenos.
La inoculación se realiza después de la pasteurización y previo a la adición del cuajo.

Figura 8.4. El cloruro de calcio agregado a la leche mejora los rendimientos en la producción de quesos.

Se aplica una cantidad de inoculante de entre 1 a 3% de la leche tratada, o lo que indique el fabricante. Las leches usadas sin pasteurización para la fabricación del queso no requieren inoculación.

Para preparar el inoculante se disuelve en la leche pasteurizada y se mantiene a temperatura de 25°C hasta la coagulación. Una vez coagulada se puede mantener en frío por unas dos semanas. De este cultivo maduro se obtiene la cantidad necesaria (1 a 3%) para inocular la leche y la necesaria para obtener un nuevo cultivo (**Figura 8.5.**).

Actualmente existen inoculantes que se aplican directamente a la leche cuando se está enfriando, después de ser pasteurizada y haya alcanzado 40°C. Los fermentos lácticos vienen en polvo y envasados para inocular diferentes cantidades de leche.

Figura. 8.5. Preparación del inoculante para inocular la leche.
8.5. Adición de cuajo

La adición de cuajo se realiza después de haber inoculado la leche pasteurizada, con cultivos lácticos. El cuajo se adiciona cuando la leche haya alcanzado entre 28 y 35°C, medidos con termómetro. Existe una relación directa entre la temperatura de la leche y la elasticidad de la cuajada. Los quesos blandos requieren menor temperatura de coagulación y los quesos duros necesitan temperaturas más elevadas.

El cuajo debe aplicarse de acuerdo con la recomendación del fabricante (Figura 8.6.). La dosis es dependiente de la fuerza del cuajo y aparentemente solo tiene efecto en el tiempo de coagulación y no en la calidad del queso. En la actualidad existe cuajo líquido que es fácil de utilizar, porque viene listo para aplicar.

Es un producto de alto valor, por ello es necesario dosificarlo adecuadamente de acuerdo con el volumen de leche que se va a cuajar. También es necesario controlar bien la temperatura de la leche para adicionado, en el momento oportuno.

Para su preparación se disuelve previamente en agua tibia. Después se distribuye por toda la tina o contenedor de leche, agitando la leche durante 2 a 5 minutos para distribuir la solución.

La coagulación demora normalmente entre media a una hora. El cuajo coagula los sólidos de la leche, especialmente la proteína (caseína) que se transforma en paracaseinato de calcio. La cuajada está lista cuando se separa de la pared de la tina o fondo sin dejar partículas adheridas y al partirla con un cuchillo el corte se ve liso, casi transparente, sin dejar residuos en el cuchillo.

Figura 8.6. Preparación del cuajo. Luego se adiciona, cuando la leche haya alcanzado entre 28 y 35°C.
8.6. Corte de cuajada

Es el procedimiento que permite la salida del líquido o suero (desuerado), se realiza con liras (Figura 8.7.). Cada lira está formada por un marco de acero inoxidable o aluminio, del tamaño de la tina o fondo y está cruzada por hilos de acero o nylon (0,5 mm), en forma vertical en unas y horizontal en otras. Con ellas se corta la cuajada en forma vertical y luego horizontal, formando cubos, que son los que determinan el tamaño del grano. Mientras más pequeños sean los cubos, menor será el tamaño del grano.

Si el grano es más pequeño, se facilita la eliminación del agua, se producen ojos más chicos y abundantes y quesos de consistencia más dura. Los tamaños de grano entre 15 a 20 mm son los más adecuados.

El corte de la cuajada debe ser cuidadoso para no romperla, permitir la liberación de agua y disminuir las pérdidas de los sólidos. La lira debe insertarse pegada a la pared de la tina. Primero se hace un corte vertical en un sentido y luego en otro, también vertical, en sentido perpendicular al anterior. Con estos cortes la superficie de la cuajada se ve dividida en forma de cuadros. Posteriormente se hace un tercer corte pasando la lira horizontal. Así la cuajada queda cortada en cubos pequeños (Figura 8.8.).

![Figura 8.7. Liras utilizadas para cortar la cuajada.](image-url)
8.7. Desuerado

Con el desuerado se elimina la parte líquida de la cuajada. Este proceso se facilita cuando la tina tiene una llave para evacuar el líquido o suero. En caso contrario se filtra el suero con un cedazo o colador fino para después realizar un preprensado manual o amasado para facilitar la liberación de suero. En este proceso hay que tener cuidado en que el suero no se lleve partículas sólidas, porque disminuye la eficiencia de la elaboración de queso.

8.8. Amasado y salado

Los granos separados del suero se amasan agitándolos manualmente. Así se evita la formación de grumos por agregación de granos e incorporación de aire a la masa. En ese momento se añade la sal en forma de salmuera, así se logra una distribución uniforme. La proporción de sal es de 100 a 130 g por cada 10 L de leche. En el amasado y salado se puede aumentar la temperatura del cuajado lo que facilita la eliminación del residuo de suero y del agua de la salmuera. Es posible postergar el salado, para cuando el queso ha sido extraído del molde, untándolo con sal, de manera que toda la superficie quede cubierta con sal.
También se puede preparar una salmuera donde los quesos se sumergen por un tiempo.

8.9. Llenado de moldes

Terminado el amasado y salado de la cuajada se llenan los moldes. Los moldes pueden ser de PVC utilizados en riego que tienen un diámetro de 11 cm de diámetro y 7,7 cm de altura, con orificios laterales (Figura 8.9.). Estos moldes son de bajo costo, fáciles de lavar y desinfectar y pueden ser tratados con agua hervida. También en el mercado existen moldes plásticos especialmente fabricados para ser utilizados en la elaboración de quesos. Otro material que puede ser utilizado es el acero inoxidable.

Antes de llenar los moldes, estos se cubren interiormente con paños de sacos harineros para ayudar la salida del suero. Los paños deben ser reemplazados constantemente y lavados con detergente y agua hervida.

El llenado se hace gradualmente presionando el material que se va agregando al molde (Figura 8.10.). Se realiza sobre una mesa con pendiente y con el extremo inferior en forma de embudo, para que el suero escurra y poder recogerlo en un recipiente colocado a los pies de la mesa (Figura 8.11.). La mesa puede ser con superficie de acero inoxidable o bien con cubierta de formalita. Con ambos materiales se logra un buen nivel higiénico.

![Figura 8.9. Moldes de PVC con orificios laterales. Es mejor el acero inoxidable, pero es de mayor costo.](image)
Figura 8.10. Llenado de moldes.

Figura 8.11. Recolección de suero al llenar los moldes.

8.10. Prensado

Una vez llenados todos los moldes, se presan con el propósito de dar forma final a los quesos y eliminar el suero que aún permanece en su interior. Durante el prensado es importante cuidar que el paño localizado dentro del molde no se
arrugue para evitar la deformación del queso. Los moldes llenos se colocan entre dos paños, uno en la base de la prensa y el otro encima de los moldes, sobre el que se realizará la presión, (Figura 8.12.). En la actualidad es factible contar con una prensa neumática, lo que facilita esta actividad (Figura 8.13.).

El tiempo de prensado depende del tipo de queso que se desea obtener. A mayor presado mayor es la cantidad de agua que se libera, generando un queso más seco.

La presión que se ejerce va desde 4 a 40 veces el peso del queso. Mientras más grande es el queso mayor es la presión ejercida. El tiempo de prensado también es variable, puede durar entre una hora hasta días. Un criterio de prensado puede ser el contenido de suero que mantiene el queso, lo que depende de su capacidad de retención. El contenido de suero que mantiene el queso se ve viendo en el mismo proceso de prensado. El quesero es el más indicado para determinar cuánta humedad desea obtener en sus quesos.

Figura 8.12. Dimensiones de una mesa de llenado de molde y recolección de suero.
Luego se sacan los quesos de la prensa y se procede a retirar los moldes y los respectivos paños (Figura 8.14). En ese momento es necesario eliminar las imperfecciones que presentan los quesos, especialmente los pedazos de material que exceden a la forma del molde. En caso que no se aplicó sal, como salmuera, después de extraído el suero, este es el momento de aplicarla. Para ello, se unta el queso con sal y se deja reposar para que la sal ingrese por osmosis. Otra forma es sumergir los quesos en salmuera.
Figura 8.14. Retiro de moldes luego de concluido el prensado de los quesos.

Para evitar la proliferación de hongos sobre el queso existen algunos productos fungicidas que aseguran la higiene y presentación del producto. En la actualidad se está utilizando una pintura plástica para revestir el queso, preparada sobre la base de acetato de polivinilo con piramicina. El recubrimiento del queso se realiza una vez que haya sido oreado, entre uno o tres días después de su elaboración.

No hay que considerar que la presencia de hongos sea negativa, porque pueden favorecer la fermentación. En estos casos para mejorar la presentación se pueden lavar, limpiar y después orear antes de ser envasados y salir a la venta.

8.11. Maduración

Durante la maduración los quesos sufren cambios biológicos y químicos que le imprimen características propias (ácidez, humedad, desarrollo de bacterias lácticas, fermentación de la lactosa y otros). Este proceso se realiza en condiciones de humedad y temperatura controlada, en una sala de maduración.
Figura 8.15. Quesos con hongos que se pueden limpiar antes de comercializar.

La humedad ambiente no debe bajar de 80 a 85% (Figura 8.16.). Una forma práctica para mantener humedad constante es mojando el piso de la sala de maduración. La temperatura ambiente debe estar entre los 16 y 18°C, que es difícil de mantener, pero con buen aislamiento se puede mantener esa temperatura durante invierno y verano. En la práctica, para subir la temperatura y la humedad se puede rociar el piso con agua caliente.

Los quesos se deben ubicar en repisas (Figura 8.17.). En la actualidad existen mallas plásticas que pueden utilizarse para tales propósitos. Este material mejora la aireación del queso en el lado de apoyo, pero de todas maneras es necesario voltearlos a diario de modo que la pérdida de humedad sea pareja y evitar que se deformen. También, mucho más higiénico y práctico, es la utilización de cajas plásticas fruteras, que tienen una capacidad de 6 kg de queso, las cuales se pueden apilar unas sobre las otras y son fáciles de mover (Figura 8.18.). Normalmente se pueden conseguir cajas eliminadas de la industria frutera, se pueden lavar, someter a temperatura y desinfectar.
Figura 8.16. Manejo de la humedad ambiental de la sala de maduración.

Figura 8.17. Repisas tradicionales de maduración de quesos.
Los cambios biológicos que se producen en la maduración eliminan algunos organismos patógenos, mejoran algunas características de aroma, sabor y disminuye la humedad. A partir del día 10 de maduración desaparecen la mayoría de los organismos no deseables. Los *Staphilococcus ssp* y *Streptococcus ssp*, que están en la leche de cabras con mastitis, demoran más tiempo. El período adecuado para el consumo oscila entre los 15 a 20 días, aunque también pueden ser consumidos frescos sin maduración.
Se recuerda que el reglamento sanitario permite que los quesos sean elaborados con leche sin pasteurizar, pero el período de maduración para este tipo de productos, antes de ser comercializados, debe ser de 30 días.

8.12. Envasado

Con el envasado se protege al queso de perturbaciones mecánicas, ataque de microorganismos y lo más importante, se busca mejorar la presentación del producto.

De acuerdo con la reglamentación sanitaria vigente, el envase debe incluir el nombre del fabricante, resolución sanitaria (número, fecha y lugar), fecha de elaboración, fecha de duración del producto, ingredientes utilizados e instrucciones para el almacenamiento, por ejemplo, manténgase en frío (Figura 8.19.).

Figura 8.19. Etiqueta tipo para envasar quesos.

Existen diferentes tipos de envases para quesos de cabra (Figura 8.20). Lo importante es que sea un envase atractivo, que llame la atención al consumidor y que refleje una asociación con una tradición geográfica o cultural y deben permitir la información del producto en la etiqueta. Además, se puede presentar desde una envoltura tradicional hasta envasado al vacío. En forma artesanal, los
quesos pueden ser envasados manualmente por unidad de producto, utilizando materiales como película plástica transparente o de color y láminas de aluminio. Las envasadoras al vacío no son de alto costo y el queso presentado así puede ser comercializado en tamaño pequeño (Figura 8.21.). Es posible obtener estas envasadoras en el mercado local para uso doméstico. Otra forma de envasado es al vacío con atmósfera controlada, envoltura apretada, tratamiento con parafina líquida y envases o cajas de cartón o madera.

Figura 8.20. Diferentes tipos de envases utilizados para queso de cabra.

CAPÍTULO 9.
COMERCIALIZACIÓN

María José Zamorano J.
Ing. Comercial, Mg. Sc.

9.1 Aspectos generales

9.1.1 Cómo aplicar el marketing al queso de cabra

El *marketing* es una palabra que se escucha a diario, sobre todo en el mundo de los negocios, pero que muy pocos saben todo lo que conlleva, la mayoría de las personas lo asocia inmediatamente a la publicidad. Sin embargo, la publicidad en el *marketing* es solo una parte, ya que se pueden encontrar otros elementos que permite comenzar/mejorar la comercialización de un producto o servicio.

Antes de concretar un proyecto, se debe comenzar con una investigación de mercado, lo que permite detectar oportunidades de negocio a través de necesidades, deseos, problemas, nuevas tendencias, que los consumidores puedan tener. En este caso se tiene el producto, el queso de cabra, donde ya se ha detectado una oportunidad gracias a la necesidad de satisfacer los gustos de los consumidores de queso.

Como segunda etapa, y donde se debe comenzar a trabajar, es segmentar el mercado; es decir, se debe incursionar en el mercado general del queso y definirlo en grupos de consumidores con características similares (por ejemplo, nivel socioeconómico, geográficos, gustos, entre otros) para luego seleccionar y apuntar todos los recursos hacia la complacencia de un grupo objetivo.

Una vez hecha la selección, se debe analizar a los consumidores que lo integran, para conocer de cerca sus gustos, hábitos de consumo y comportamiento de compra. Luego es preciso analizar a la competencia, ver cuál es su ubicación, ventajas, desventajas, precios, estrategias, productos, presentación y otros.

Habiéndose analizado los factores externos, se comienza a diseñar o redesignar el producto en cuestión para mejorarlo o adaptarlo a los gustos del público objetivo y también para diferenciarse de la competencia. Alguna de las formas de diferenciación es: calidad del producto, diseño del envase, origen, asociado a las costumbres y cultura y precio, entre otros.
Luego de adaptar el producto se debe definir el precio de comercialización, en relación con la capacidad económica del público objetivo, a las aspiraciones económicas que se desea alcanzar al promedio de los precios de mercado de la competencia, y a los costos de producción del queso de cabra. Los métodos más comúnmente usados son: (1) identificar todos los costos asociados al producto, sumarlos y luego al total agregarle el margen de ganancia que se quiere lograr. (2) Determinar el precio promedio de la competencia. No obstante, estos métodos pueden usarse como complemento de otros factores, tales como la disposición a pagar por los consumidores, la capacidad económica del público objetivo, la percepción sobre el valor del producto, entre otros.

La octava fase es la distribución del producto, y para esto se deben definir los canales y puntos de ventas, teniendo en cuenta los gustos y necesidades del público objetivo. Para que estos puedan acceder de forma eficiente al producto generado.

En conjunto con la distribución, también se debe publicitar el producto, para que los consumidores se puedan informar sobre lo que se está ofreciendo. La entrega de información puede ser a través de medios publicitarios tales como: folletos, internet, redes sociales (Facebook, Instagram y otros), diarios, televisión, radio, vía pública, puerta a puerta y pizarras informativas.

Después de informar sobre el producto, se debe promocionar o incentivar la compra con promociones, como por ejemplo ofertas, descuentos, 2x1, degustaciones, concurso, entre otros. De esta forma se incentiva a los consumidores a que prueben el producto.

Por último, se debe estructurar estrategias para fidelizar clientes. Luego que el consumidor adquiere un producto, también se debe estar atentos a la post-venta; es decir, realizar un seguimiento de la compra, así podemos conocer la opinión de los clientes para seguir mejorando nuestro producto. Esto lo podemos realizar a través del “servicio al cliente”. Es fundamental mantener el contacto con los consumidores para estar atentos a los cambios de las preferencias que existen en el mercado y así entregar un producto mejor y re-inventado.

9.1.2. Aspectos generales de la comercialización

La comercialización del queso de cabra es uno de los factores de mayor complejidad dentro de todo el proceso de su elaboración, dada la idea de la posibilidad de contagio de Fiebre Ondulante como consecuencia del foco de brucelosis que se produjo en el pasado. No obstante, hoy los mayores problemas son la deficiente higiene de la leche y del proceso de elaboración del producto; sal-
monelas, colifecales y estreptococos son gérmenes normales de muchos de los quesos que se comercializan. De hecho, antecedentes del Servicio de Salud Coquimbo establecen que las mayores intoxicaciones de la región se producen por consumo de queso de cabra. Aun así, la calidad del queso, específicamente en lo que se refiere a higiénica, ha mejorado significativamente, lo que ha permitido encontrar este producto en cadenas de grandes supermercados nacionales.

La oferta de leche para quesos en los sistemas tradicionales ha inducido a que el precio del queso sea cíclico en la temporada (Figura 9.1.). Pero el diseño de sistemas mejorados de producción, semiestabulados o estabulados, ha ampliado la oferta a gran parte del año. La reglamentación sanitaria es otro de los factores que también incidirá en el comportamiento del precio de queso en el mercado.

9.2. Canales de distribución

La producción caprina se comercializa, según INE 2016, en forma directa, a través de intermediarios, industria láctea, otros canales de comercialización o no registra comercialización.

En el Cuadro 9.1. se indica la participación absoluta y relativa de los canales de comercialización. La forma de comercializar los productos generados en las explotaciones caprinas depende del tamaño del rebaño, es así que, para productores con menos de 20 cabras, comercializan mayoritariamente en forma directa; en cambio, en rebaños mayores la comercialización se realiza utilizando intermediarios.

![Figura 9.1. Índice de producción anual y precios a nivel de productor.](image-url)
En la región de Coquimbo, el 78,3% de la producción total de queso de cabra se elabora en forma casera, un 15% se efectúa en queserías familiares, que cumplen con mayor grado de condiciones de inocuidad para su elaboración. El destino de la producción de queso es a nivel nacional y comercializado mayoritariamente por sus fabricantes, a un precio que oscila entre los $4,000 y $6,000 el kilo; mientras que un 29,3% se produce a través de intermediarios, quienes distribuyen los quesos en diferentes ciudades del país, estos se pueden encontrar desde supermercados a ferias libres, con precios referenciales que van entre $7,000 a $15,000 por kilo.

Durante los últimos años se ha incorporado la necesidad de competir en el mercado, con el fin de diferenciarse de la masificación de la producción de queserías existentes en el sur del país. Es así como diferentes gremios campesinos han buscado desmarcarse de la producción industrializada, buscando una denominación de origen a su producción artesanal del Queso de Cabra de Cordillera, incorporando incluso un valor agregado con especies y hierbas tipo gourmet.

En el mercado nacional del queso de cabra se puede mencionar que este producto es considerado como "gourmet". Este tipo de alimento presenta características distintivas, como por ejemplo: altos precios, bajas escalas productivas, alta calidad, bajo consumo per cápita, concentración de la oferta por parte de grupos de mayores ingresos. Estos antecedentes, suponen que para que este mercado sea atractivo para la AF, en relación con la rentabilidad de su emprendimiento, es necesario potenciar el valor de sus quesos y esto se puede lograr por medio de certificaciones, adecuados procesos productivos (bajo condiciones de higiene), uso de tecnologías que permitan diferenciar los productos en función de sus atributos (FIA, 2005).

<table>
<thead>
<tr>
<th></th>
<th>Directa a consumidor</th>
<th>Intermediario</th>
<th>Industrias o plantas lecheras</th>
<th>Otros canales de comercialización</th>
<th>No realizó comercialización</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coquimbo</td>
<td>43,86</td>
<td>44,45</td>
<td>-</td>
<td>-</td>
<td>11,69</td>
</tr>
<tr>
<td>20 a 49</td>
<td>65,14</td>
<td>13,03</td>
<td>-</td>
<td>-</td>
<td>21,83</td>
</tr>
<tr>
<td>50 a 199</td>
<td>37,13</td>
<td>55,83</td>
<td>-</td>
<td>-</td>
<td>7,04</td>
</tr>
<tr>
<td>200 y más</td>
<td>27,47</td>
<td>58,99</td>
<td>-</td>
<td>-</td>
<td>13,54</td>
</tr>
</tbody>
</table>

En relación con el tema de comercialización de este producto, depende en gran medida del origen del queso de cabra, que puede ser de procedencia artesanal o industrial, como ya fue señalado. En el caso de origen artesanal, se caracteriza por presentar un gran número de intermediarios (desde productor a consumidor). Dicha situación genera bajos precios pagados al productor y calidad deficiente del producto ofrecido. En el caso del queso de cabra de origen industrial, se utilizan canales de comercialización más transparentes, en donde el número de intermediarios involucrados desde productor a consumidor es menor, en comparación con el queso de cabra de origen artesanal. Es por esta situación que los productores de queso industrial obtienen un mejor precio por sus quesos (FIA, 2002).

De acuerdo con la cantidad de queso que consumen los chilenos, existen estadísticas oficiales que señalan que este corresponde a 4,1 kg per cápita, en donde 200 gramos pertenecen a queso de cabra. De este volumen mencionado, solo 30 gramos corresponden a queso procedente del mercado industrial, de unas 25 marcas diferentes (FIA, 2002; Cortés, 2007). Otro aspecto importante en la comercialización de este producto es el precio. En el mercado informal el precio del queso de cabra es de 0,94 a 4,7 dólares por kg (este valor varía de acuerdo con el tipo de queso, zona de producción y de su calidad). En relación con el mercado formal, el precio puede variar entre los 4,7 a 6,6 dólares por kilogramo (Cortés, 2007).

En relación con el mercado formal de quesos de cabra, destaca Chevrita, que es una empresa chilena que se distingue por producir este alimento con altos estándares de calidad y por exportarlo hacia diferentes destinos, dentro de los cuales se encuentran: Argentina, Brasil, Bolivia, Estados Unidos y México (Cortés, 2007).

Como se observa, el queso de cabra se vende tanto en el mercado nacional como internacional. Sin embargo, en el mercado nacional existe un elemento distintivo, que dice relación con la alta estacionalidad que presenta el producto. Es decir, la oferta de este producto se concentra en un periodo determinado del año, en este caso desde agosto a enero, en donde los mayores volúmenes producidos es en los meses de octubre y noviembre.

9.3. Algunas consideraciones para mejorar la comercialización

a) Cumplimiento de normas de calidad sanitaria (regirse por el Reglamento Sanitario de los Alimentos).
b) Presentación del Producto. Envase bien diseñado y presentado, agradable a la vista y atractivo.

d) Tamaño de las unidades, preferentemente de 250 a 300 g.

e) Transporte en frío.

f) Código de barras.

g) Presencia del producto todo el año.

h) Devolución de lo que no se vende.

i) Actividades de publicidad siempre son positivas cuando se cuenta con un producto de buena calidad.

j) Abastecimiento permanente.
9.4. FICHAS TÉCNICA-ECONÔMICA

Ordeña manual v/s Ordeña mecánica

<table>
<thead>
<tr>
<th>Implementos</th>
<th>ORDEÑA MANUAL</th>
<th>Ordeña Mecánica</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cantidad</td>
<td>Valor/Unidad</td>
</tr>
<tr>
<td>Botas</td>
<td>2</td>
<td>11.900</td>
</tr>
<tr>
<td>Tarro Lechero</td>
<td>1</td>
<td>44.440</td>
</tr>
<tr>
<td>Baldes Plásticos</td>
<td>2</td>
<td>4.400</td>
</tr>
<tr>
<td>Colador</td>
<td>1</td>
<td>2.000</td>
</tr>
<tr>
<td>Paño para secar ubre</td>
<td>1</td>
<td>1.500</td>
</tr>
<tr>
<td>Desinfectante</td>
<td>1</td>
<td>1.199</td>
</tr>
<tr>
<td>Mastitis (Gorban)</td>
<td>6</td>
<td>6.300</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Artículos de aseo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Escobillones</td>
<td>2</td>
<td>3.000</td>
</tr>
<tr>
<td>Palas</td>
<td>2</td>
<td>4.400</td>
</tr>
<tr>
<td>Jabón</td>
<td>4</td>
<td>3.500</td>
</tr>
<tr>
<td>Detergente</td>
<td>2</td>
<td>10.000</td>
</tr>
<tr>
<td>Bolsas basura</td>
<td>3</td>
<td>3.200</td>
</tr>
<tr>
<td>Personal (JH)</td>
<td>2</td>
<td>257.500</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td>772.779</td>
</tr>
<tr>
<td>Equipos de Ordeña</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>COSTO TOTAL</td>
<td></td>
<td>2.170.257</td>
</tr>
</tbody>
</table>

Valores expresados en pesos de septiembre de 2016.
Infraestructura: manga de ordeña
Tipo de Ordeña: manual

<table>
<thead>
<tr>
<th>INFRAESTRUCTURA</th>
<th>CANTIDAD</th>
<th>MEDIDAS/UNIDAD</th>
<th>COSTO/UNIDAD</th>
<th>COSTO TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barandas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pino sulfatado 2"</td>
<td>24</td>
<td>2,4 m</td>
<td>1.070</td>
<td>25.680</td>
</tr>
<tr>
<td>Pino sulfatado 3"</td>
<td>8</td>
<td>2,4 m</td>
<td>1.471</td>
<td>11.768</td>
</tr>
<tr>
<td>Pilares</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pino sulfatado 3"</td>
<td>10</td>
<td>2,4 m</td>
<td>1.471</td>
<td>14.710</td>
</tr>
<tr>
<td>Travesaños*</td>
<td>15</td>
<td>0,60 m</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Piso</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tablas</td>
<td>6</td>
<td>1"x6"</td>
<td>2.610</td>
<td>15.660</td>
</tr>
<tr>
<td>Entrada**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pino sulfatado 2"</td>
<td>15</td>
<td>2,4 m</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Escala</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tablas</td>
<td>2</td>
<td>1"x6"</td>
<td>2.610</td>
<td>5.220</td>
</tr>
<tr>
<td>Pino sulfatado 3"</td>
<td>6</td>
<td>2,4 m</td>
<td>1.471</td>
<td>8.826</td>
</tr>
<tr>
<td>Puertas***</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tablas</td>
<td>14</td>
<td>0,60 m</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bisagras 4"</td>
<td>2</td>
<td>Pares</td>
<td>7.390</td>
<td>14.780</td>
</tr>
<tr>
<td>Clavos 3"</td>
<td>4</td>
<td>kg</td>
<td>623</td>
<td>2.492</td>
</tr>
<tr>
<td>COSTO TOTAL</td>
<td></td>
<td></td>
<td></td>
<td>99.136</td>
</tr>
</tbody>
</table>

* No involucra costo extra, pues se utilizan restos de madera usados como pilares, de 1,80 m de altura y restos de barandas de 3".
** No involucra costo extra, pues se utilizan restos de barandas de 2".
*** No involucra costo, pues se utilizan restos de barandas de 2".

Valores expresados en pesos de septiembre de 2016. Modificado por R. Meneses de la 1ra Edición.
Inversión y costos de operación de una quesería tipo, con capacidad de elaboración de 100 L/día (14 kg de queso/día)

<table>
<thead>
<tr>
<th>INFRAESTRUCTURA</th>
<th>CANTIDAD (en $)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quesería (60 m²), Sala de elaboración, Sala de maduración, Baño, Sala de elaboración</td>
<td>5.000.000</td>
</tr>
<tr>
<td>Mesa de llenado de moldes</td>
<td>50.000</td>
</tr>
<tr>
<td>Moldes (tubo PVC 110 mm)</td>
<td>199.920</td>
</tr>
<tr>
<td>Prensa</td>
<td>4.700.500</td>
</tr>
<tr>
<td>Paneles de separación</td>
<td>36.807</td>
</tr>
<tr>
<td>Agua potable y desagüe</td>
<td>23.694</td>
</tr>
<tr>
<td>Cocina industrial gas un plato</td>
<td>90.000</td>
</tr>
<tr>
<td>Otros (pintura, clavos, tarro lechero, olla aluminio)</td>
<td>62.990</td>
</tr>
<tr>
<td>Subtotal sala de elaboración</td>
<td>5.163.911</td>
</tr>
<tr>
<td>Sala de maduración</td>
<td></td>
</tr>
<tr>
<td>Estantes</td>
<td>48.330</td>
</tr>
<tr>
<td>INVERSIÓN</td>
<td>10.212.241</td>
</tr>
<tr>
<td>Personal</td>
<td></td>
</tr>
<tr>
<td>1 maestro quesero</td>
<td>503.924</td>
</tr>
<tr>
<td>1 ayudante</td>
<td>281.962</td>
</tr>
<tr>
<td>Gastos básicos</td>
<td>314.952</td>
</tr>
<tr>
<td>COSTOS DE OPERACIÓN</td>
<td>1.100.838</td>
</tr>
<tr>
<td>TOTAL</td>
<td>11.313.079</td>
</tr>
</tbody>
</table>

Valores expresados en pesos de septiembre de 2016.
Producto: queso de cabra
Rendimiento: 142 quesos/1.000 L de leche.
Costo de elaboración de 1 kg de queso.

<table>
<thead>
<tr>
<th>MATERIALES Y SUMINISTROS</th>
<th>CANTIDAD</th>
<th>UNIDAD</th>
<th>COSTO (en $)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leche $400</td>
<td>7</td>
<td>L</td>
<td>2.800</td>
</tr>
<tr>
<td>Cuajo</td>
<td>0,3</td>
<td>g</td>
<td>6</td>
</tr>
<tr>
<td>Fermentos lácticos</td>
<td>1,4</td>
<td>g</td>
<td>135</td>
</tr>
<tr>
<td>Cloruro de calcio</td>
<td>1,4</td>
<td>g/kg</td>
<td>1</td>
</tr>
<tr>
<td>Cloruro de sodio</td>
<td>75,5</td>
<td>g/kg</td>
<td>14</td>
</tr>
<tr>
<td>Cera Prinal</td>
<td>17,5</td>
<td>g/kg</td>
<td>443</td>
</tr>
<tr>
<td>Etiqueta</td>
<td>1</td>
<td>Unidad</td>
<td>172</td>
</tr>
<tr>
<td>Gas</td>
<td>0,09</td>
<td>kg/kg</td>
<td>74</td>
</tr>
<tr>
<td>Mano de Obra</td>
<td></td>
<td></td>
<td>399</td>
</tr>
<tr>
<td>Gastos Generales</td>
<td></td>
<td></td>
<td>92</td>
</tr>
<tr>
<td>COSTO UNITARIO</td>
<td></td>
<td></td>
<td>4.136</td>
</tr>
<tr>
<td>COSTO TOTAL PRODUCCIÓN (142 quesos)</td>
<td></td>
<td></td>
<td>587.317</td>
</tr>
</tbody>
</table>

Valores expresados en pesos de septiembre de 2016.

Cálculo de margen bruto 142 kg de queso (1.000 L).

<table>
<thead>
<tr>
<th>PRECIO DE VENTA/kg ($)</th>
<th>INGRESO BRUTO ($)**</th>
<th>MARGEN BRUTO ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.500</td>
<td>304.500</td>
<td>27.440</td>
</tr>
<tr>
<td>3.000</td>
<td>383.400</td>
<td>109.340</td>
</tr>
<tr>
<td>3.500</td>
<td>447.300</td>
<td>173.240</td>
</tr>
</tbody>
</table>

** Se considera un 10% de comisión de venta.
Valores expresados en pesos de septiembre de 2016.
Costos de infraestructura de una planta quesera de 96 m² Dimensión: 6 x 16 m

<table>
<thead>
<tr>
<th>INFRAESTRUCTURA</th>
<th>COSTO ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hormigón y cimientos ($6.198m)</td>
<td>272.712</td>
</tr>
<tr>
<td>Radier (100 m² $13.792)</td>
<td>1.379.166</td>
</tr>
<tr>
<td>Estructura de pino</td>
<td>-</td>
</tr>
<tr>
<td>Exterior (44 m² x 2, $7.749)</td>
<td>340.956</td>
</tr>
<tr>
<td>Interior (128 m²)</td>
<td>991.872</td>
</tr>
<tr>
<td>Aislante (228 m² * $870)</td>
<td>358.530</td>
</tr>
<tr>
<td>Forros exteriores (88 m² x 6.207)</td>
<td>546.216</td>
</tr>
<tr>
<td>Forros interiores (128 m² x $6.207)</td>
<td>794.496</td>
</tr>
<tr>
<td>Cielo (100 m² x $5.899)</td>
<td>589.900</td>
</tr>
<tr>
<td>Techo pizarreño (100 m² x $5.459)</td>
<td>545.918</td>
</tr>
<tr>
<td>Instalación eléctrica</td>
<td>1.049.841</td>
</tr>
<tr>
<td>Pintura exterior látex (88 m² x $1.200)</td>
<td>19.980</td>
</tr>
<tr>
<td>Pintura interior óleo (128 m² x $1.800)</td>
<td>39.960</td>
</tr>
<tr>
<td>Pintura piso epóxica (100 m² x $2.000)</td>
<td>67.980</td>
</tr>
<tr>
<td>Repisas (63 m² x $5.000)</td>
<td>661.400</td>
</tr>
<tr>
<td>Baños</td>
<td>-</td>
</tr>
<tr>
<td>Instalación WC c/estanque</td>
<td>84.485</td>
</tr>
<tr>
<td>Lavamanos</td>
<td>24.000</td>
</tr>
<tr>
<td>Receptáculo</td>
<td>36.954</td>
</tr>
<tr>
<td>Cámaras</td>
<td>52.492</td>
</tr>
<tr>
<td>Locker</td>
<td>79.000</td>
</tr>
<tr>
<td>Pie de ducha enlozado</td>
<td>40.000</td>
</tr>
<tr>
<td>Alcantarillados, fosa y pozo</td>
<td>1.049.841</td>
</tr>
<tr>
<td>Agua potable</td>
<td>944.858</td>
</tr>
<tr>
<td>Gas y calefón</td>
<td>314.953</td>
</tr>
<tr>
<td>Planos alcantarillados</td>
<td>209.968</td>
</tr>
<tr>
<td>Derecho servicio de salud</td>
<td>363.245</td>
</tr>
<tr>
<td>Puertas (6 x $20.990)</td>
<td>125.940</td>
</tr>
<tr>
<td>Ventanas (4 x $32.000)</td>
<td>128.000</td>
</tr>
<tr>
<td>TOTAL</td>
<td>11.175.653</td>
</tr>
</tbody>
</table>

Valores expresados en pesos de septiembre de 2016.
Costos de implementación de una planta quesera para elaborar 1.000 litros de leche por día.

<table>
<thead>
<tr>
<th>IMPLEMENTOS</th>
<th>COSTO ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quemadores y fogones (2)</td>
<td>180.000</td>
</tr>
<tr>
<td>Reguladores de gas</td>
<td>22.800</td>
</tr>
<tr>
<td>Mesa de trabajo</td>
<td>583.100</td>
</tr>
<tr>
<td>Batidor manual</td>
<td>119.000</td>
</tr>
<tr>
<td>Liras (2 x $232.050)</td>
<td>464.100</td>
</tr>
<tr>
<td>Termómetro</td>
<td>3.000</td>
</tr>
<tr>
<td>MOlDES CON TACO DE MADERA</td>
<td>-</td>
</tr>
<tr>
<td>28 moldes Plásticos de 2 kg x $26.299</td>
<td>736.372</td>
</tr>
<tr>
<td>112 moldes PVC de 0,5 kg x $5.940</td>
<td>666.400</td>
</tr>
<tr>
<td>Reloj mural</td>
<td>8.000</td>
</tr>
<tr>
<td>Balanza</td>
<td>55.000</td>
</tr>
<tr>
<td>Utensilios plásticos</td>
<td>84.000</td>
</tr>
<tr>
<td>Prensa horizontal (6 bandejas, 13 quesos c/u)</td>
<td>4.700.500</td>
</tr>
<tr>
<td>Tinas 500 litros (2)</td>
<td>4.462.500</td>
</tr>
<tr>
<td>Envasadora al vacío</td>
<td>2.015.000</td>
</tr>
<tr>
<td>INSTRUMENTOS DE LABORATORIO</td>
<td>-</td>
</tr>
<tr>
<td>Pipetas de titulación</td>
<td>104.985</td>
</tr>
<tr>
<td>Densímetro</td>
<td>84.000</td>
</tr>
<tr>
<td>Productos de vidrio</td>
<td>104.985</td>
</tr>
<tr>
<td>TOTAL</td>
<td>13.793.742</td>
</tr>
</tbody>
</table>

Valores expresados en pesos de septiembre de 2016.
Inversiones en sala de ordeña y bodega

Tamaño 6 x 12 m

<table>
<thead>
<tr>
<th>INFRAESTRUCTURA</th>
<th>COSTO ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radier (72 m² x $13.792)</td>
<td>993.000</td>
</tr>
<tr>
<td>Hormigón y cimientos (3,83 m³ x $97.911)</td>
<td>375.000</td>
</tr>
<tr>
<td>Estructura de pino (72m² x $7.750)</td>
<td>558.000</td>
</tr>
<tr>
<td>Cielo (72 m² x $5.899)</td>
<td>424.750</td>
</tr>
<tr>
<td>Forros exteriores (69,8 m² x $5.899)</td>
<td>411.750</td>
</tr>
<tr>
<td>Forros interiores 120 m² x $5899)</td>
<td>707.880</td>
</tr>
<tr>
<td>Techumbre de pizarreño (72 m² x $5.899)</td>
<td>424.750</td>
</tr>
<tr>
<td>Puertas (3 x $20.990)</td>
<td>62.970</td>
</tr>
<tr>
<td>Ventanas (4 x $32.000)</td>
<td>128.000</td>
</tr>
<tr>
<td>Provisión lavamanos</td>
<td>19.990</td>
</tr>
<tr>
<td>Construcción cámara</td>
<td>52.492</td>
</tr>
<tr>
<td>Instalación eléctrica</td>
<td>314.953</td>
</tr>
<tr>
<td>Equipo de ordeña</td>
<td>833.000</td>
</tr>
<tr>
<td>TOTAL</td>
<td>5.306.535</td>
</tr>
</tbody>
</table>
Referencias bibliográficas

Eurochile (1997). Estudio y análisis del mercado de queso de cabra producido por pequeños productores y crianceros de la IV Región. Coquimbo, Chile.

1. Antecedentes generales

Los factores que inciden en los sistemas de producción animal son semejantes entre sí, pero difieren en la proporción relativa en que participan, de acuerdo a las características particulares de cada especie animal y del lugar donde se desarrolla. El conocimiento de éstos y sus interacciones, contribuye al logro de los objetivos del sistema.

El sistema productivo caprino en la región de Coquimbo es extensivo. Depende de las especies herbáceas arbustivas y arbóreas de la pradera natural que se desarrolla con las precipitaciones invernales. El manejo de los animales en general presenta problemas, como por ejemplo, el manejo reproductivo, manteniendo el macho todo el año con las hembras. También el manejo nutricional, aunque en el último tiempo se está utilizando cada vez más, recursos suplementarios como concentrados y heno de alfalfa.

La producción caprina se orienta a la producción de leche para elaborar queso, siendo esta actividad esencial, dado que su venta constituye la principal fuente de ingresos de los pequeños productores. En segunda instancia, la comercialización de cabritos que genera un ingreso adicional complementario y de autoconsumo.

2. Parámetros del rendimiento

No existe un sistema de producción único y aplicable a cada circunstancia, pero sí a principios básicos, como las leyes biológicas, a las cuales están sometidos todos los sistemas agropecuarios.

El encaste, parición, lactancia y la crianza, son etapas del proceso no modificables y requieren ciertas condiciones para alcanzar los objetivos productivos predeterminados, ya sea en litros de leche o kilogramos de predeterminados, ya sea en litros de leche o kilogramos de carne, según la orientación productiva.

Estos indicadores son los componentes de rendimiento, que para el caso de la producción caprina se detallan en el Cuadro 1 y se esquematizan en el Cuadro 2.

Cuadro 1. Parámetros del rendimiento definidos para la producción caprina.

<table>
<thead>
<tr>
<th>PR</th>
<th>Parámetros</th>
<th>Fórmula de medición del componente de rendimiento</th>
<th>Óptimo</th>
</tr>
</thead>
<tbody>
<tr>
<td>PR1</td>
<td>Reproducción</td>
<td>% preñez (cabras preñadas /cabras totales).</td>
<td>90-100%</td>
</tr>
<tr>
<td>PR2</td>
<td>% fertilidad (cabra parida/cabra encastada) *100.</td>
<td></td>
<td>85-90%</td>
</tr>
<tr>
<td>PR3</td>
<td>% prolificidad (número de cabritos/cabra parida) *100.</td>
<td></td>
<td>100-140%</td>
</tr>
<tr>
<td>PR4</td>
<td>Mortalidad</td>
<td>Adultos (cabras muertas/cabras totales) *100.</td>
<td><5%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cabritos (cabras muertos/cabras totales) *100.</td>
<td>5-10%</td>
</tr>
<tr>
<td>Leche</td>
<td>Producción de leche</td>
<td>Producción total de leche (litros de leche/cabra).</td>
<td>>225L</td>
</tr>
<tr>
<td>Carne</td>
<td>PR5</td>
<td>Producción de leche</td>
<td>Producción total de leche (litros de leche/cabra).</td>
</tr>
<tr>
<td></td>
<td>PR6</td>
<td>Producción de carne</td>
<td>Peso destete promedio cabrito.</td>
</tr>
<tr>
<td></td>
<td>PR7</td>
<td>Producción de carne</td>
<td>Peso venta cabrito.</td>
</tr>
</tbody>
</table>
Cuadro 2. Estados de desarrollo y momento de chequeo.

<table>
<thead>
<tr>
<th>PR</th>
<th>Encaste</th>
<th>Último tercio preñez</th>
<th>Parto Lactancia</th>
<th>Crianza</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reproducción</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Mortalidad</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Producción de leche</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Producción de carne</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

En el desarrollo del ciclo productivo de los caprinos se distinguen 4 etapas claves: (1) Encaste, (2) Último tercio de preñez, (3) Parto-lactancia, y (4) Crianza. Cada una de estas etapas, tiene asociados manejos que son críticos para obtener los mejores resultados productivos y para que se cumplan todos los parámetros de rendimiento definidos anteriormente.

En el Cuadro 3 se observa un esquema con los puntos de chequeo según las etapas de desarrollo definidos.

Cuadro 3. Punto de chequeo según etapas de producción definida

<table>
<thead>
<tr>
<th>Estado fisiológico</th>
<th>PC</th>
<th>Punto de Chequeo</th>
<th>Fórmula de medición</th>
<th>Óptimo</th>
<th>Medida correctiva</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encaste</td>
<td>PC1</td>
<td>Alimentación estrategica.</td>
<td>Condición corporal promedio cabra.</td>
<td>3</td>
<td>Suplementar, heno de alfalfa, residuos agrícolas, concentrado. Bajo CC 3.</td>
</tr>
<tr>
<td></td>
<td>PC2</td>
<td>Peso de encaste (cabritillas 1–2 años).</td>
<td>Peso por animal encastado (kg/animal promedio).</td>
<td>75% peso adulto (45 kg promedio).</td>
<td>Suplementar, heno de alfalfa, otras forrajeras, concentrados y subproductos agrícolas bajo los 38 kg sugeridos de encaste.</td>
</tr>
<tr>
<td></td>
<td>PC3</td>
<td>Temporada no reproductiva.</td>
<td>Macho separado de hembras.</td>
<td>Ausencia.</td>
<td>Separar machos de hembras fuera de temporada reproductiva.</td>
</tr>
<tr>
<td></td>
<td>PC4</td>
<td>Duración de encaste.</td>
<td>Dias de duración del encaste.</td>
<td>Máximo 2 meses.</td>
<td>Mantener siempre los machos separados excepto en el encaste.</td>
</tr>
<tr>
<td></td>
<td>PC5</td>
<td>Edad del reproductor en actividad reproductiva.</td>
<td>Años que se usa el macho en reproducción.</td>
<td>Máximo 2 años.</td>
<td>Cambiar macho.</td>
</tr>
<tr>
<td></td>
<td>PC6</td>
<td>Relación hembra macho.</td>
<td>Número de hembras en encaste/número de machos reproductores.</td>
<td>75 hembras por temporada.</td>
<td>Usar mayor número de machos en la medida que el encaste se realiza en el campo.</td>
</tr>
<tr>
<td></td>
<td>PC7</td>
<td>Registros de encaste.</td>
<td>Usa planillas de registro con fecha de encaste.</td>
<td>SÍ</td>
<td>Implementar registros para facilitar el manejo y la selección de animales en base a datos objetivos.</td>
</tr>
<tr>
<td>Último tercio de preñez</td>
<td>PC8</td>
<td>Alimentación estratégica.</td>
<td>Suplementación alimenticia según condición corporal.</td>
<td>3</td>
<td>Suplementar heno de diferentes forrajes, subproductos agrícolas concentrado. Bajo CC 3.</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----</td>
<td>--------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>PC9</td>
<td>Manejo sanitario preventivo.</td>
<td>Realizar vacunación de enfermedades Clostridiales y desparasitación preventiva.</td>
<td>Siempre</td>
<td>Realizar siempre manejo sanitario, principalmente de las crías contra enfermedades clostridiales los primeros 30 días de vida.</td>
<td></td>
</tr>
<tr>
<td>PC11</td>
<td>Uso de registros. Usa registros de pariciones.</td>
<td>Llevar registro general.</td>
<td>Implementar registros.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crianza</td>
<td>PC13</td>
<td>Peso destete. Kg promedio animal destetado.</td>
<td>10-12 kg</td>
<td>Suplementar con 100 a 300 g de concentrado.</td>
<td></td>
</tr>
<tr>
<td>PC14</td>
<td>Peso de venta. Kg promedio animal vendido.</td>
<td>15-20 kg</td>
<td>Suplementar con 100 a 300 g de concentrado.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PC15</td>
<td>Presenta registros. Usa planilla de registros de peso de animales.</td>
<td>SÍ</td>
<td>Implementar registros de peso de animales, lo que facilita el manejo y la selección de animales en base a datos objetivos.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>